EPJ Web of Conferences
Latest Publications


TOTAL DOCUMENTS

19257
(FIVE YEARS 4881)

H-INDEX

25
(FIVE YEARS 7)

Published By Edp Sciences

2100-014x

2022 ◽  
Vol 258 ◽  
pp. 08003
Author(s):  
Biagio Lucini ◽  
Ed Bennett ◽  
Jack Holligan ◽  
Deog Ki Hong ◽  
Ho Hsiao ◽  
...  

We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamental and three antisymmetric Dirac flavours. The main motivation of our programme is to test whether this latter model is viable as a realisation of Higgs compositeness via the pseudo Nambu Goldstone mechanism and at the same time can provide partial top compositeness. In this respect, we report and briefly discuss preliminary results for the mass of the composite baryon made with two fundamental and one antisymmetric fermion (chimera baryon), whose physical properties are highly constrained if partial top compositeness is at work. Our investigation shows that a fully non-perturbative study of Higgs compositeness and partial top compositeness in Sp(4) is within reach with our current lattice methodology.


2022 ◽  
Vol 258 ◽  
pp. 09003
Author(s):  
Andreas Windisch ◽  
Thomas Gallien ◽  
Christopher Schwarzlmüller

Dyson-Schwinger equations (DSEs) are a non-perturbative way to express n-point functions in quantum field theory. Working in Euclidean space and in Landau gauge, for example, one can study the quark propagator Dyson-Schwinger equation in the real and complex domain, given that a suitable and tractable truncation has been found. When aiming for solving these equations in the complex domain, that is, for complex external momenta, one has to deform the integration contour of the radial component in the complex plane of the loop momentum expressed in hyper-spherical coordinates. This has to be done in order to avoid poles and branch cuts in the integrand of the self-energy loop. Since the nature of Dyson-Schwinger equations is such, that they have to be solved in a self-consistent way, one cannot analyze the analytic properties of the integrand after every iteration step, as this would not be feasible. In these proceedings, we suggest a machine learning pipeline based on deep learning (DL) approaches to computer vision (CV), as well as deep reinforcement learning (DRL), that could solve this problem autonomously by detecting poles and branch cuts in the numerical integrand after every iteration step and by suggesting suitable integration contour deformations that avoid these obstructions. We sketch out a proof of principle for both of these tasks, that is, the pole and branch cut detection, as well as the contour deformation.


2022 ◽  
Vol 258 ◽  
pp. 06009
Author(s):  
Oscar Catà

I will review recent developments in rare and radiative kaon decays from the theory side, with emphasis on those modes that are actively analyzed by the experimental collaborations.


2022 ◽  
Vol 258 ◽  
pp. 02010
Author(s):  
Vitaly Bornyakov ◽  
Vladimir Goy ◽  
Evgeny Kozlovsky ◽  
Valentin Mitrjushkin ◽  
Roman Rogalyov

In the Landau-gauge lattice gluodynamics we find that, both in the SU(2) and SU(3) theory, a correlation of the Polyakov loop with the asymmetry of the A2 gluon condensate as well as with the longitudinal propagator makes it possible to determine the critical behavior of these quantities. We discuss finitevolume corrections and reveal that they can be reduced by the use of regression analysis. We also analyze the temperature dependence of low-momenta propagators in different Polyakov-loop sectors.


2022 ◽  
Vol 258 ◽  
pp. 02003
Author(s):  
Giuseppe Burgio ◽  
Hannes Vogt

We show that, when investigating Wilson-fermions correlation functions on the lattice, one is bound to encounter major difficulties in defining their dispersion relation, even at tree level. The problem is indeed quite general and, although we stumbled upon it while studying Coulomb-gauge applications, it also affects gauge fixed studies in covariant gauges, including their most popular version, Landau gauge. In this paper we will discuss a solution to this problems based on a redefinition of the kinematic momentum of the fermion.


2022 ◽  
Vol 258 ◽  
pp. 01003
Author(s):  
Christopher Kelly

We discuss the RBC & UKQCD collaborations’ recent [1] lattice calculation of ϵ′, the measure of direct CP-violation in kaon decays. This result significantly improves on our previous 2015 calculation, with nearly 4× the statistics and more reliable systematic error estimates. We discuss how our results demonstrate the Standard Model origin of the ΔI = 1/2 rule, and present our plans for future calculations.


2022 ◽  
Vol 258 ◽  
pp. 03002
Author(s):  
Hui Li ◽  
Xiaoyu Wang ◽  
Zhun Lu

We study the single-spin asymmetry ATsin(2ϕ−ϕS) in the pion-induced Drell-Yan process within the transverse momentum dependent factorization (TMD factorization). The asymmetry can be expressed as the convolution of the Boer-Mulders function and the transversity function. We numerically estimate the asymmetry ATsin(2ϕ−ϕS) at the COMPASS kinematics with the model results for the pion meson distributions from the light-cone wave function approach and the available parametrization for the proton distributions. We also include the TMD evolution formalism both proton and pion parton distribution functions by using two different parametrizations on nonperturbative Sudakov form factor. We find that the asymmetry ATsin(2ϕ−ϕS) as functions of xp, xπ, xF and q⊥ is qualitatively consistent with the recent COMPASS measurement.


2022 ◽  
Vol 258 ◽  
pp. 05006
Author(s):  
Miguel Ángel Escobedo

We study the transitions between the different color states of a static quark-antiquark pair, singlet and octet, in a thermal medium. This is done non-perturbatively exploiting the infinite mass limit of QCD. This study is interesting because it can be used for future developments within the framework of Effective Field Theories (EFTs) and because it can be combined with other techniques, like lattice QCD or AdS/CFT, to gain non-perturbative information about the evolution of quarkonium in a medium. We also study the obtained expressions in the large Nc limit. This allows us to learn lessons that are useful to simplify phenomenological models of quarkonium in a plasma.


2022 ◽  
Vol 258 ◽  
pp. 03003
Author(s):  
Sergey Mikhailov ◽  
Alexandr Pimikov ◽  
N.G. Stefanis

We study two versions of lightcone sum rules to calculate the γ*γ → π0 transition form factor (TFF) within QCD. While the standard version is based on fixed-order perturbation theory by means of a power-series expansion in the strong coupling, the new method incorporates radiative corrections by renormalization-group summation and generates an expansion within a generalized fractional analytic perturbation theory involving only analytic couplings. Using this scheme, we determine the relative nonperturbative parameters and the first two Gegenbauer coefficients of the pion distribution amplitude (DA) to obtain TFF predictions in good agreement with the preliminary BESIII data, while the best-fit pion DA satisfies the most recent lattice constraints on the second moment of the pion DA at the three-loop level.


2022 ◽  
Vol 258 ◽  
pp. 01001
Author(s):  
Miguel Ángel Escobedo

This is a discussion about open quantum systems and its application to the study of hard probes. It reviews some of the things that were said in the corresponding round table. Views are only my own.


Sign in / Sign up

Export Citation Format

Share Document