EPJ Web of Conferences
Latest Publications


TOTAL DOCUMENTS

19257
(FIVE YEARS 10331)

H-INDEX

25
(FIVE YEARS 15)

Published By Edp Sciences

2100-014x
Updated Monday, 17 January 2022

2022 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Stéphane Delorme ◽  
Thierry Gousset ◽  
Roland Katz ◽  
Pol-Bernard Gossiaux

We investigate the real-time dynamics of a correlated heavy quarkantiquark pair inside the Quark-Gluon Plasma using new quantum master equations derived from first QCD principles and based on the work of Blaizot & Escobedo [4]. The full equations are directly numerically solved in one-dimension to reduce computing costs and is used to gain insight on the dynamics in both a static and evolving medium following a Björken-like temperature evolution. The effect of the initial state on the dynamics is also studied.


2022 ◽  
Vol 258 ◽  
pp. 10008
Author(s):  
Oleg Teryaev ◽  
Valentin Zakharov

The interplay between classical vorticity being the main undisputed source of polarization in heavy-ion collisions (HIC) and quantized vortices is considered. The vortex tubes emerging in the rotating pionic (super) fluid polarize the baryons in their cores and explain the emerging global polarization. The appearance of vortices in the region separating participants and spectators in non-central HIC is similar to that for sliding layers of liquid helium. From the other side, it is also the region where the classical vorticity was earlier found to be large forming the vortex sheets. The formation of tubes manifests a threshold at certain critical vorticity implying the vanishing polarization at lower energies. For central HIC the compact jet-like flows may lead to formation of vortex rings related to local polarization. The P-odd momentum correlations for their experimental investigation are suggested. The role of shear and viscosity in the emergence of polarization is discussed.


2022 ◽  
Vol 258 ◽  
pp. 01007
Author(s):  
Jon-Ivar Skullerud

I review some of the recent progress in QCD at high temperature and density, with a focus on the nature of the high-temperature transition; cold and dense matter; and hadron properties and transport coefficients at high temperature.


2022 ◽  
Vol 258 ◽  
pp. 09002
Author(s):  
Glen Cowan

The statistical significance that characterizes a discrepancy between a measurement and theoretical prediction is usually calculated assuming that the statistical and systematic uncertainties are known. Many types of systematic uncertainties are, however, estimated on the basis of approximate procedures and thus the values of the assigned errors are themselves uncertain. Here the impact of the uncertainty on the assigned uncertainty is investigated in the context of the muon g - 2 anomaly. The significance of the observed discrepancy between the Standard Model prediction of the muon’s anomalous magnetic moment and measured values are shown to decrease substantially if the relative uncertainty in the uncertainty assigned to the Standard Model prediction exceeds around 30%. The reduction in sensitivity increases for higher significance, so that establishing a 5σ effect will require not only small uncertainties but the uncertainties themselves must be estimated accurately to correspond to one standard deviation.


2022 ◽  
Vol 258 ◽  
pp. 02007
Author(s):  
Edward Shuryak

Exclusive processes are traditionally described by perturbative hard blocks and “distribution amplitudes" (DAs), matrix elements of operators of various chiral structure and twist. One paper (with I.Zahed) calculate instanton contribution to hard blocks, which is found comparable to perturbative one in few-GeV2 Q2 region of interest. Another paper aims at comprehensive wave functions of mesons, baryons and pentaquarks. The last ones are also included as 5-quark component of the baryons. The calculation, using ’t Hooft operator, gives x-dependence and magnitude of the antiquark PDF. It explains long standing issue of strong flavor asymmetry of antiquark sea. The third paper (also with I.Zahed) is semi-review on the instanton-sphaleron processes in QCD and electroweak theories, with emphasis on their possible experimental observation via double diffractive events at LHC and RHIC. Insert your english abstract here.


2022 ◽  
Vol 258 ◽  
pp. 03004
Author(s):  
Chandni Menapara ◽  
Ajay Kumar Rai

Hadron Spectroscopy provides a realm to study the internal quark dynamics within the hadrons through phenomenological, theoretical as well as experimental approaches. In the present article, an attempt has been made to exploit the nucleon N resonances using a non-relativistic hypercentral Constituent Quark Model (hCQM). The properties are studied based on the linear nature of confining part of the potential. The 1S-5S, 1P-3P, 1D-2D and 1F states mostly with four star labelled resonances are explored again with the separation of charge states using different constituent quark masses. Also, Regge trajectories for some obtained states are plotted for examining the linear nature.


2022 ◽  
Vol 258 ◽  
pp. 05004
Author(s):  
Tyler Gorda

The propagation of long-wavelength gluons through a dense QCD medium at high baryon chemical potential μB is qualitatively modified by the effects of screening, arising from scatterings off the high-momentum quarks in the medium. This same screening phenomenon also impacts gluons occurring in loop corrections to the pressure of cold quark matter, leading to contributions from the parametric scale αs1/2μB, starting at next-to-next-to-leading order (N2LO) in the strong coupling constant αs. At next-to-next-to-next-to-leading order (N3LO), interactions between these long-wavelength gluonic modes contribute to the pressure. These interaction corrections have recently been computed in Ref [1, 2], and the inclusion of these interactions slightly improves the convergence of the equation of state of cold quark matter. In these proceedings, we present these results and provide details summarizing how this lengthy calculation was performed.


2022 ◽  
Vol 258 ◽  
pp. 10007
Author(s):  
Sebastian Grieninger ◽  
Sergio Morales-Tejera

We study the real time evolution of the chiral magnetic effect out-ofequilibrium in strongly coupled anomalous field theories. We match the parameters of our model to QCD parameters and draw lessons of possible relevance for the realization of the chiral magnetic effect in heavy ion collisions. In particular, we find an equilibration time of about ~ 0:35 fm/c in presence of the chiral anomaly for plasma temperatures of order T ~ 300 - 400 MeV.


2022 ◽  
Vol 258 ◽  
pp. 08005
Author(s):  
Eberhard Klempt

A coupled-channel analysis has been performed to identify the spectrum of scalar mesons. The data include BESIII data on radiative J/ψ decays into π0π0, KS KS, ηη, and ωϕ, 15 Dalitz plots from ¯N annihilation at rest at LEAR, the CERN-Munich multipoles for ππ elastic scattering, the S-wave from BNL data on ππ scattering into KS KS, from GAMS data on ππ π0π0; ηη, and ηη', and NA48/2 data on low-mass ππ interactions from K± → ππe±v decays. The analysis reveals the existence of ten scalar isoscalar resonances. The resonances can be grouped into two classes: resonances with a large SU(3) singlet component and those with a large octet component. The production of isoscalar resonances with a large octet component should be suppressed in radiative J/ψ decays. However, in a limited mass range centered at 1900MeV, these mesons are produced abundantly. Mainly-singlet scalar resonances are produced over the full mass range but with larger intensity at 1900MeV. The total scalar isoscalar yield in radiative decays into scalar mesons shows a clear peak which is interpreted as the scalar glueball of lowest mass.


2022 ◽  
Vol 258 ◽  
pp. 05007
Author(s):  
Wojciech Bryliński ◽  

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a fixedtarget experiment operating at the CERN SPS accelerator. The main goal of the strong interactions program of NA61/SHINE is to study the properties of the phase transition between confined matter and quark-gluon plasma by performing a two-dimensional scan in beam momentum and size of collided nuclei. Within this program, collisions of different systems (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) over a wide range of beam momenta (13A-150(8)A GeV/c) have been recorded. This contribution discusses the latest results of hadron production in p+p, Be+Be, Ar+Sc and Pb+Pb reactions measured by the NA61/SHINE. In particular, the results include charged kaons and pions spectra and higher-order moments of multiplicity and net charge distributions. The presented data are compared with the predictions of different theoretical models as well as the results from other experiments. Finally, the motivation and plans for future NA61/SHINE measurements are discussed.


Sign in / Sign up

Export Citation Format

Share Document