EPJ Web of Conferences
Latest Publications


TOTAL DOCUMENTS

19257
(FIVE YEARS 4881)

H-INDEX

25
(FIVE YEARS 7)

Published By Edp Sciences

2100-014x

2022 ◽  
Vol 258 ◽  
pp. 01001
Author(s):  
Miguel Ángel Escobedo

This is a discussion about open quantum systems and its application to the study of hard probes. It reviews some of the things that were said in the corresponding round table. Views are only my own.


2022 ◽  
Vol 258 ◽  
pp. 06007
Author(s):  
Alex Gnech ◽  
Jordy de Vries ◽  
Sachin Shain ◽  
Michele Viviani

CP-violating interactions at quark level generate CP-violating nuclear interactions and currents, which could be revealed by looking at the presence of a permanent nuclear electric dipole moment. Within the framework of chiral effective field theory, we discuss the derivation of the CP-violating nuclear potential up to next-to-next-to leading order (N2LO) and the preliminary results for the charge operator up to next-to leading order (NLO). Moreover, we introduce some renormalization argument which indicates that we need to promote the short-distance operator to the leading order (LO) in order to reabsorb the divergences generated by the one pion exchange. Finally, we present some selected numerical results for the electric dipole moments of 2H, 3He and 3H discussing the systematic errors introduced by the truncation of the chiral expansion.


2022 ◽  
Vol 258 ◽  
pp. 04002
Author(s):  
Vladyslav Shtabovenko

The width difference ΔΓs that can be extracted from lifetime measurements of the two mass eigenstates of the Bs0−B¯s0 system is one of the key flavor precision observables and has been experimentally measured at per cent level accuracy. The current theory prediction is much less accurate and a sizable reduction of scale uncertainties can only be achieved by means of evaluating the uncalculated 2- and 3-loop QCD corrections. This is precisely the issue addressed in this work where we report on the results that have been obtained so far and explain some of the technical and conceptual challenges that we encountered in the course of our calculations.


2022 ◽  
Vol 258 ◽  
pp. 10006
Author(s):  
Juan L. Mañes ◽  
Eugenio Megías ◽  
Manuel Valle ◽  
Miguel Á. Vázquez-Mozo

We study the constitutive relations of a chiral hadronic fluid in presence of non-Abelian’t Hooft anomalies. Analytical expressions for the covariant currents are obtained at first order in derivatives in the chiral symmetric phase, for both two and three quark flavors in the presence of chiral imbalance. We also investigate the constitutive relations after chiral symmetry breaking at the leading order.


2022 ◽  
Vol 258 ◽  
pp. 04008
Author(s):  
Kirill Boguslavski ◽  
Babak Kasmaei ◽  
Michael Strickland

The imaginary part of the effective heavy-quark potential can be related to the total in-medium decay width of of heavy quark-antiquark bound states. We extract the static limit of this quantity using classical-statistical simulations of the real-time Yang-Mills dynamics by measuring the temporal decay of Wilson loops. By performing the simulations on finer and larger lattices we are able to show that the nonperturbative results follow the same form as the perturbative ones. For large quark-antiquark separations, we quantify the magnitude of the non-perturbative long-range corrections to the imaginary part of the heavy-quark potential. We present our results for a wide range of temperatures, lattice spacings, and lattice volumes. We also extract approximations for the short-distance behavior of the classical potential.


2022 ◽  
Vol 258 ◽  
pp. 08002
Author(s):  
Gabriele Ferretti

I review attempts to construct models of partial compositeness from strongly coupled gauge theories. A few minimal assumptions allow one to isolate a small number of representative models. After presenting the main idea, I discuss a recent proposal to detect a light pseudo-scalar, predicted in all these models, at the LHCb detector.


2022 ◽  
Vol 258 ◽  
pp. 06003
Author(s):  
Giancarlo Rossi

In this talk we describe examples of renormalizable strongly interacting field theories where chiral symmetry, broken at the UV cutoff by the presence of some irrelevant d > 4 operators in the fundamental Lagrangian, is recovered at low energy owing to the tuning of certain Lagrangian parameters. The interference of UV effects with IR features coming from the spontaneous breaking of the recovered chiral symmetry yields non perturbatively generated elementary fermion masses parametrically expressed by formulae of the kind mq ~ Cq(α)ΛRGI with α the gauge coupling constant and ΛRGI the RGI scale of the theory. Upon introducing EW interactions, this mechanism can be extended to give mass to EW bosons and leptons and can thus be used as an alternative to the Higgs scenario. In order to give the top quark and the weak gauge bosons a mass of the phenomenologically correct order of magnitude, the model must necessarily include (yet unobserved) super-strongly interacting massive fermions endowed, besides ordinary Standard Model interactions, with super-strong interactions with a RGI scale, ΛT ΛQCD in the few TeV range. Though limited in its scope (here we ignore hypercharge and leptons and discuss only the case of one family neglecting weak isospin splitting), the model opens the way to a solution of the naturalness problem and an understanding of the fermion mass hierarchy.


2022 ◽  
Vol 258 ◽  
pp. 05010
Author(s):  
Mariia Mitrankova ◽  
Alexander Berdnikov ◽  
Yaroslav Berdnikov ◽  
Dmitry Kotov ◽  
Iurii Mitrankov

The measurements of light hadron production in small collision systems (such as p+Al, p+Au, d+Au, 3He+Au) may allow to explore the quarkgluon plasma formation and to determine the main hadronization mechanism in the considered collisions. Such research has become particularly crucial with the observation of the light hadrons collective behavior in p/d/3He+Au collisions at √SNN = 200 GeV and in p+Al collisions at the same energy at forward and backward rapidities. Among the large variety of light hadrons, ϕ meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma. The paper presents the comparison of the obtained experimental results on ϕ meson production to different light hadron production in p+Al and 3He+Au at √SNN = 200 GeV at midrapidity. The comparisons of ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √SNN = 200 GeV at midrapidity to theoretical models predictions (PYTHIA model and default and string melting versions of the AMPT model) are also provided. The results suggest that the QGP can be formed in p/d/3He+Au collisions, but the volume and lifetime of the produced medium might be insufficient for observation of strangeness enhancement effect. Conceivably, the main hadronization mechanism of ϕ meson production in p+Al collisions is fragmentation, while in p/d/3He+Au collisions this process occurs via coalescence.


2022 ◽  
Vol 258 ◽  
pp. 08003
Author(s):  
Biagio Lucini ◽  
Ed Bennett ◽  
Jack Holligan ◽  
Deog Ki Hong ◽  
Ho Hsiao ◽  
...  

We review numerical results for models with gauge group Sp(2N), discussing the glueball spectrum in the large-N limit, the quenched meson spectrum of Sp(4) with Dirac fermions in the fundamental and in the antisymmetric representation and the Sp(4) gauge model with two dynamical Dirac flavours. We also present preliminary results for the meson spectrum in the Sp(4) gauge theory with two fundamental and three antisymmetric Dirac flavours. The main motivation of our programme is to test whether this latter model is viable as a realisation of Higgs compositeness via the pseudo Nambu Goldstone mechanism and at the same time can provide partial top compositeness. In this respect, we report and briefly discuss preliminary results for the mass of the composite baryon made with two fundamental and one antisymmetric fermion (chimera baryon), whose physical properties are highly constrained if partial top compositeness is at work. Our investigation shows that a fully non-perturbative study of Higgs compositeness and partial top compositeness in Sp(4) is within reach with our current lattice methodology.


2022 ◽  
Vol 258 ◽  
pp. 09003
Author(s):  
Andreas Windisch ◽  
Thomas Gallien ◽  
Christopher Schwarzlmüller

Dyson-Schwinger equations (DSEs) are a non-perturbative way to express n-point functions in quantum field theory. Working in Euclidean space and in Landau gauge, for example, one can study the quark propagator Dyson-Schwinger equation in the real and complex domain, given that a suitable and tractable truncation has been found. When aiming for solving these equations in the complex domain, that is, for complex external momenta, one has to deform the integration contour of the radial component in the complex plane of the loop momentum expressed in hyper-spherical coordinates. This has to be done in order to avoid poles and branch cuts in the integrand of the self-energy loop. Since the nature of Dyson-Schwinger equations is such, that they have to be solved in a self-consistent way, one cannot analyze the analytic properties of the integrand after every iteration step, as this would not be feasible. In these proceedings, we suggest a machine learning pipeline based on deep learning (DL) approaches to computer vision (CV), as well as deep reinforcement learning (DRL), that could solve this problem autonomously by detecting poles and branch cuts in the numerical integrand after every iteration step and by suggesting suitable integration contour deformations that avoid these obstructions. We sketch out a proof of principle for both of these tasks, that is, the pole and branch cut detection, as well as the contour deformation.


Sign in / Sign up

Export Citation Format

Share Document