scholarly journals Barley ROP Binding Kinase1 Is Involved in Microtubule Organization and in Basal Penetration Resistance to the Barley Powdery Mildew Fungus

2012 ◽  
Vol 159 (1) ◽  
pp. 311-320 ◽  
Author(s):  
Christina Huesmann ◽  
Tina Reiner ◽  
Caroline Hoefle ◽  
Jutta Preuss ◽  
Manuela E. Jurca ◽  
...  
2009 ◽  
Vol 94 (2-3) ◽  
pp. 127-132 ◽  
Author(s):  
Sally R. Gilbert ◽  
Hans J. Cools ◽  
Bart A. Fraaije ◽  
Andy M. Bailey ◽  
John A. Lucas

2019 ◽  
Vol 21 (12) ◽  
Author(s):  
Lara Smigielski ◽  
Geziel B. Aguilar ◽  
Mark Kwaaitaal ◽  
Wen‐Jing Zhang ◽  
Hans Thordal‐Christensen

2008 ◽  
Vol 18 (7) ◽  
pp. 974-979 ◽  
Author(s):  
Byum-Soo Kim ◽  
Han-Su Jang ◽  
Chung-Sig Choi ◽  
Jong-Sik Kim ◽  
Gi-Seok Kwon ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. 633-642 ◽  
Author(s):  
Clara Pliego ◽  
Daniela Nowara ◽  
Giulia Bonciani ◽  
Dana M. Gheorghe ◽  
Ruo Xu ◽  
...  

Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function.


Planta ◽  
2005 ◽  
Vol 223 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Kirsten A. Nielsen ◽  
Maria Hrmova ◽  
Janni Nyvang Nielsen ◽  
Karin Forslund ◽  
Stefan Ebert ◽  
...  

2009 ◽  
Vol 22 (3) ◽  
pp. 311-320 ◽  
Author(s):  
Pingsha Hu ◽  
Yan Meng ◽  
Roger P. Wise

Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase α subunit 2 (HvASa2), and chorismate mutase 1 (HvCM1) occupy pivotal branch points downstream of the shikimate pathway leading to the synthesis of aromatic amino acids. Here, we provide functional evidence that these genes contribute to penetration resistance to Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. Single-cell transient-induced gene silencing of HvCS and HvCM1 in mildew resistance locus a (Mla) compromised cells resulted in increased susceptibility. Correspondingly, overexpression of HvCS, HvASa2, and HvCM1 in lines carrying mildew resistance locus o (Mlo), a negative regulator of penetration resistance, significantly decreased susceptibility. Barley stripe mosaic virus–induced gene silencing of HvCS, HvASa2, and HvCM1 significantly increased B. graminis f. sp. hordei penetration into epidermal cells, followed by formation of haustoria and secondary hyphae. However, sporulation of B. graminis f. sp. hordei was not detected on the silenced host plants up to 3 weeks after inoculation. Taken together, these results establish a previously unrecognized role for the influence of HvCS, HvASa2, and HvCM1 on penetration resistance and on the rate of B. graminis f. sp. hordei development in Mla-mediated, barley–powdery mildew interactions.


Sign in / Sign up

Export Citation Format

Share Document