negative regulator
Recently Published Documents





2022 ◽  
Vol 12 (5) ◽  
pp. 958-963
Fei Gao ◽  
Xiaoming Wu ◽  
Zhao Guo ◽  
Jianzhong Wang ◽  
Wenshan Gao ◽  

This study explored whether teriparatide promotes BMSCs proliferation and differentiation via downregulating miR-298 and provided a basis for bone repair. Based on the microarray analysis after teriparatide treatment, qRT-PCR verified the differentially expressed miRNAs and the osteogenic differentiation was assessed by transfection of miRNA overexpression plasmids and miRNA inhibitors. miRNA array analysis and qRT-PCR verification showed that miR-298 was significantly downregulated during teriparatide-induced BMSCs differentiation. miR-298 overexpression significantly inhibited ALP and OPN expression which was promoted by transfection of miR-298 inhibitor. miR-298 is a negative regulator of BMSCs differentiation induced by teriparatide. Dlx5 is the target of miR-298. Inhibition of DLX5 expression by miR-298 was involved in the osteogenic differentiation of BMSCs. In conclusion, miR-298 negatively regulates the differentiation of BMSCs induced by teriparatide by targeting DLX5, providing a possible therapeutic target for bone tissue repair and regeneration.

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 205
Di Wu ◽  
Mingjuan Gu ◽  
Zhuying Wei ◽  
Chunling Bai ◽  
Guanghua Su ◽  

Myostatin (MSTN) is a major negative regulator of skeletal muscle mass and causes a variety of metabolic changes. However, the effect of MSTN knockout on bile acid metabolism has rarely been reported. In this study, the physiological and biochemical alterations of serum in MSTN+/− and wild type (WT) cattle were investigated. There were no significant changes in liver and kidney biochemical indexes. However, compared with the WT cattle, lactate dehydrogenase, total bile acid (TBA), cholesterol, and high-density lipoprotein (HDL) in the MSTN+/− cattle were significantly increased, and glucose, low-density lipoprotein (LDL), and triglycerides (TG) were significantly decreased, indicating that MSTN knockout affected glucose and lipid metabolism and total bile acids content. Targeted metabolomic analysis of the bile acids and their derivatives was performed on serum samples and found that bile acids were significantly increased in the MSTN+/− cattle compared with the WT cattle. As the only bile acid synthesis organ in the body, we performed metabolomic analysis on the liver to study the effect of MSTN knockout on hepatic metabolism. Metabolic pathway enrichment analysis of differential metabolites showed significant enrichment of the primary bile acid biosynthesis and bile secretion pathway in the MSTN+/− cattle. Targeted metabolomics data further showed that MSTN knockout significantly increased bile acid content in the liver, which may have resulted from enhanced bile acid synthesis due to the expression of bile acid synthesis genes, cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), and upregulation in the liver of the MSTN+/− cattle. These results indicate that MSTN knockout does not adversely affect bovine fitness but regulates bile acid metabolism via enhanced bile acid synthesis. This further suggests a role of MSTN in regulating metabolism.

2022 ◽  
LaNisha L. Patterson ◽  
Thangam Sudha Velayutham ◽  
Caitlan D. Byerly ◽  
Duc Cuong Bui ◽  
Jignesh Patel ◽  

Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve exploitation of multiple evolutionarily conserved cellular signaling pathways including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/non-canonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands.

2022 ◽  
Ben F Brian ◽  
Frances V Sjaastad ◽  
Tanya S Freedman

The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, i.e., Lck, Fyn, Lyn, Hck, Fgr, Blk, Src, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that nucleates an autoinhibitory complex. Csk also binds phosphatases, including PTPN12 (PTP-PEST) and immune-cell PTPN22 (Pep/LYP), which dephosphorylate the SFK activation loop to promote autoinhibition. High local concentrations of Csk are required to promote its negative-regulatory function, and Csk-binding proteins (e.g., CBP/PAG1) oligomerize within membrane microdomains. Purified Csk also homodimerizes in solution through an interface that overlaps the phosphatase binding site. Here we demonstrate that Csk can homodimerize in Jurkat T cells, in competition with PTPN22 binding. We designed SH3-domain mutations in Csk that selectively impair homodimerization (H21I) or PTPN22 binding (K43D) and verified their kinase activity in solution. Csk W47A, an SH3-domain mutant commonly used to block PTPN22 binding, also impairs homodimerization. Csk H21I and K43D will be useful tools for dissecting the protein-specific drivers of autoimmunity mediated by the human polymorphism PTPN22 R620W, which impairs interaction with both Csk and with the E3 ubiquitin ligase TRAF3. Future investigations of Csk homodimer activity and phosphatase interactions may reveal new facets of SFK regulation in hematopoietic and non-hematopoietic cells.

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 80
Jing Bin ◽  
Meilin Zhu ◽  
Huifen Ding ◽  
Zhouying Zai ◽  
Tingting Shi ◽  

Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.

2022 ◽  
Vol 23 (2) ◽  
pp. 880
Chuwei Lin ◽  
Aneirin Alan Lott ◽  
Wei Zhu ◽  
Craig P. Dufresne ◽  
Sixue Chen

Mitogen-activated protein kinase 4 (MPK4) was first identified as a negative regulator of systemic acquired resistance. It is also an important kinase involved in many other biological processes in plants, including cytokinesis, reproduction, and photosynthesis. Arabidopsis thaliana mpk4 mutant is dwarf and sterile. Previous omics studies including genomics, transcriptomics, and proteomics have revealed new functions of MPK4 in different biological processes. However, due to challenges in metabolomics, no study has touched upon the metabolomic profiles of the mpk4 mutant. What metabolites and metabolic pathways are potentially regulated by MPK4 are not known. Metabolites are crucial components of plants, and they play important roles in plant growth and development, signaling, and defense. Here we used targeted and untargeted metabolomics to profile metabolites in the wild type and the mpk4 mutant. We found that in addition to the jasmonic acid and salicylic acid pathways, MPK4 is involved in polyamine synthesis and photosynthesis. In addition, we also conducted label-free proteomics of the two genotypes. The integration of metabolomics and proteomics data allows for an insight into the metabolomic networks that are potentially regulated by MPK4.

Satoru Ato ◽  
So-ichiro Fukada ◽  
Hiroki Kokubo ◽  
Riki Ogasawara

Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary density, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 weeks after synergist ablation. Interestingly, the increase in capillary-fiber ratio observed in WT mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.

2022 ◽  
Vol 13 (1) ◽  
Yanyun Du ◽  
Qianwen Peng ◽  
Du Cheng ◽  
Ting Pan ◽  
Wanwei Sun ◽  

AbstractTherapeutic blockade of the immune checkpoint proteins programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has transformed cancer treatment. However, the overall response rate to these treatments is low, suggesting that immune checkpoint activation is not the only mechanism leading to dysfunctional anti-tumour immunity. Here we show that butyrophilin-like protein 2 (BTNL2) is a potent suppressor of the anti-tumour immune response. Antibody-mediated blockade of BTNL2 attenuates tumour progression in multiple in vivo murine tumour models, resulting in prolonged survival of tumour-bearing mice. Mechanistically, BTNL2 interacts with local γδ T cell populations to promote IL-17A production in the tumour microenvironment. Inhibition of BTNL2 reduces the number of tumour-infiltrating IL-17A-producing γδ T cells and myeloid-derived suppressor cells, while facilitating cytotoxic CD8+ T cell accumulation. Furthermore, we find high BTNL2 expression in several human tumour samples from highly prevalent cancer types, which negatively correlates with overall patient survival. Thus, our results suggest that BTNL2 is a negative regulator of anti-tumour immunity and a potential target for cancer immunotherapy.

2022 ◽  
Vol 12 ◽  
Hanchu Xiong ◽  
Zihan Chen ◽  
Baihua Lin ◽  
Bojian Xie ◽  
Xiaozhen Liu ◽  

NRF2 is an important regulatory transcription factor involved in tumor immunity and tumorigenesis. In this study, we firstly identified that FKBP4/NR3C1 axis was a novel negative regulator of NRF2 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at protein level of NRF2 since it could not suppress the expression of NRF2 at mRNA level. Bioinformatics analysis and in vitro experiments further demonstrated that FKBP4 regulated NRF2 via regulating nuclear translocation of NR3C1. We then reported that naringenin, a flavonoid, widely distributed in citrus and tomato, could suppress autophagy and proliferation of BC cells through FKBP4/NR3C1/NRF2 signaling pathway in vitro and in vivo. Naringenin was also found to promote dendritic cell (DC) differentiation and maturation through FKBP4/NR3C1/NRF2 axis. Therefore, our study found that naringenin could induce inhibition of autophagy and cell proliferation in BC cells and enhance DC differentiation and maturation, at least in part, though regulation of FKBP4/NR3C1/NRF2 signaling pathway. Identification of FKBP4/NR3C1/NRF2 axis would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.

2022 ◽  
Vol 119 (3) ◽  
pp. e2117338119
Rebecca B. Berlow ◽  
H. Jane Dyson ◽  
Peter E. Wright

Intrinsically disordered proteins must compete for binding to common regulatory targets to carry out their biological functions. Previously, we showed that the activation domains of two disordered proteins, the transcription factor HIF-1α and its negative regulator CITED2, function as a unidirectional, allosteric molecular switch to control transcription of critical adaptive genes under conditions of oxygen deprivation. These proteins achieve transcriptional control by competing for binding to the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300 (CREB: cyclic-AMP response element binding protein). To characterize the mechanistic details behind this molecular switch, we used solution NMR spectroscopy and complementary biophysical methods to determine the contributions of individual binding motifs in CITED2 to the overall competition process. An N-terminal region of the CITED2 activation domain, which forms a helix when bound to TAZ1, plays a critical role in initiating competition with HIF-1α by enabling formation of a ternary complex in a process that is highly dependent on the dynamics and disorder of the competing partners. Two other conserved binding motifs in CITED2, the LPEL motif and an aromatic/hydrophobic motif that we term ϕC, function synergistically to enhance binding of CITED2 and inhibit rebinding of HIF-1α. The apparent unidirectionality of competition between HIF-1α and CITED2 is lost when one or more of these binding regions is altered by truncation or mutation of the CITED2 peptide. Our findings illustrate the complexity of molecular interactions involving disordered proteins containing multivalent interaction motifs and provide insight into the unique mechanisms by which disordered proteins compete for occupancy of common molecular targets within the cell.

Sign in / Sign up

Export Citation Format

Share Document