Genetic analysis of the obligate parasitic barley powdery mildew fungus based on RFLP and virulence loci

1990 ◽  
Vol 79 (5) ◽  
pp. 705-712 ◽  
Author(s):  
S. K. Christiansen ◽  
H. Giese
2009 ◽  
Vol 94 (2-3) ◽  
pp. 127-132 ◽  
Author(s):  
Sally R. Gilbert ◽  
Hans J. Cools ◽  
Bart A. Fraaije ◽  
Andy M. Bailey ◽  
John A. Lucas

2019 ◽  
Vol 21 (12) ◽  
Author(s):  
Lara Smigielski ◽  
Geziel B. Aguilar ◽  
Mark Kwaaitaal ◽  
Wen‐Jing Zhang ◽  
Hans Thordal‐Christensen

2008 ◽  
Vol 18 (7) ◽  
pp. 974-979 ◽  
Author(s):  
Byum-Soo Kim ◽  
Han-Su Jang ◽  
Chung-Sig Choi ◽  
Jong-Sik Kim ◽  
Gi-Seok Kwon ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. 633-642 ◽  
Author(s):  
Clara Pliego ◽  
Daniela Nowara ◽  
Giulia Bonciani ◽  
Dana M. Gheorghe ◽  
Ruo Xu ◽  
...  

Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function.


Genome ◽  
1989 ◽  
Vol 32 (5) ◽  
pp. 913-917 ◽  
Author(s):  
Y. Tosa

F1 hybrid cultures between Erysiphe graminis f.sp. agropyri (wheatgrass mildew fungus) and E. graminis f.sp. tritici (wheat mildew fungus) were produced by using a common host of the two formae spéciales. When three common wheat cultivars, Triticum aestivum cv. Norin 4, T. aestivum cv. Norin 10, and T. compactum cv. No. 44, were inoculated with a population of F1 cultures, avirulent and virulent cultures segregated in a 3:1 ratio. This indicated that two major genes are involved in the avirulence of E. graminis f.sp. agropyri, Ak-1, on each of the three cultivars. Further analyses revealed that the three pairs of avirulence genes have one gene in common. On T. aestivum cv. Shin-chunaga, T. aestivum cv. Norin 26, and a strain of T. macha, the F1 population segregated in the same pattern as on T. aestivum cv. Norin 4, indicating that the same pair of avirulence genes is operating on these four cultivars. On T. aestivum cv. Red Egyptian the distribution of F1 phenotypes was continuous, suggesting that no major genes are involved in the avirulence of Ak-1 on this cultivar.Key words: powdery mildew, Erysiphe graminis, avirulence, wheat, wheatgrass.


Planta ◽  
2005 ◽  
Vol 223 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Kirsten A. Nielsen ◽  
Maria Hrmova ◽  
Janni Nyvang Nielsen ◽  
Karin Forslund ◽  
Stefan Ebert ◽  
...  

2012 ◽  
Vol 159 (1) ◽  
pp. 311-320 ◽  
Author(s):  
Christina Huesmann ◽  
Tina Reiner ◽  
Caroline Hoefle ◽  
Jutta Preuss ◽  
Manuela E. Jurca ◽  
...  

Genome ◽  
1994 ◽  
Vol 37 (3) ◽  
pp. 460-468 ◽  
Author(s):  
Mamatha Mahadevappa ◽  
Richard A. DeScenzo ◽  
Roger P. Wise

In barley (Hordeum vulgare L.), the Mla locus conditions reaction to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Enrichment for genetic recombinants in the Mla region is possible by screening for recombination events between the flanking endosperm storage proteins hordeins C and B. Reciprocal crosses were made between the Franger (C.I. 16151) and Rupee (C.I. 16155) lines carrying the (Mla6 + Mla14) and Mla13 alleles, respectively. Recombinants were identified from F2 segregants by analyzing the extracted hordein polypeptides by sodium dodecyl sulphate – polyacrylamide gel electrophoresis. Two hundred and seventy-six recombinant gametes were identified from the 1800 seeds that were screened. Recombination of Mla alleles was analyzed by inoculating F4 recombinant lines with three isolates of E. graminis (A27, 5874, and CR3), which recognize specific Mla alleles. The linkage order established is Hor1–Mla6–Mla13–Mla14–Hor2. The genetic distances between Hor1–Mla6, Mla6–Mla13, and Mla13–Hor2, obtained using Mapmaker 3.0b F3 intercross analysis, are 3.9, 0.2, and 5.2 cM, respectively.Key words: recombinant, barley, powdery mildew, Mla, hordein.


Sign in / Sign up

Export Citation Format

Share Document