2-Pyridiniohydrazinium dichloride

2006 ◽  
Vol 62 (7) ◽  
pp. o2677-o2679 ◽  
Author(s):  
Metin Zora ◽  
Günseli Turgut ◽  
Mustafa Odabaşoğlu ◽  
Orhan Büyükgüngör

The crystal structure of the title compound, C5H9N3 2+·2Cl−, is stabilized by N—H...Cl hydrogen bonds, forming a three-dimensional network. Each chloride anion forms three hydrogen bonds with N atoms, and the hydrazine unit forms R 2 1(5) motifs with one of the Cl− anions. The aromatic ring is almost coplanar with both the N atoms of the hydrazine substituent and with one of the Cl− anions.

2014 ◽  
Vol 70 (12) ◽  
pp. o1272-o1272
Author(s):  
Zhiqiu Chen ◽  
Hembat Bolat ◽  
Xing Wan ◽  
Ya Li

The asymmetric unit of the title compound, C6H5Cl2NO2S, contains two molecules with similar conformations (r.m.s. overlay fit for the non-H atoms = 0.067 Å). Atoms attached to the pendent Csp3—S bond are arranged in a staggered conformation with one of the Cl atomsantito the C atom in the aromatic ring [C—S—C—Cl torsion angles = 178.41 (11) and −176.70 (13)°]. In the crystal, molecules are linked by C—H...N and C—H...O hydrogen bonds, generating a three-dimensional network, and weak aromatic π–π stacking is also observed [centroid–centroid separation = 3.8902 (17) Å].


2014 ◽  
Vol 70 (11) ◽  
pp. o1200-o1201
Author(s):  
Lucimara Julio Martins ◽  
Deborah de Alencar Simoni ◽  
Ricardo Aparicio ◽  
Fernando Coelho

The title compound, C18H17NO5, was prepared by a synthetic strategy based on the Heck reaction from Morita–Baylis–Hillman adducts. The five-membered ring adopts a slightly twisted conformation on the Ca—Cm(a = aromatic and m = methylene) bond. The dihedral angle between the five-membered ring and the spiro aromatic ring is 89.35 (7)°; that between the five-membered ring and the 4-methoxybenzene ring is 4.65 (7)°. Two short intramolecular C—H...O contacts occur. In the crystal, molecules are linked by C—H...O hydrogen bonds to generate a three-dimensional network.


2016 ◽  
Vol 72 (8) ◽  
pp. 1219-1222
Author(s):  
Md. Serajul Haque Faizi ◽  
Musheer Ahmad ◽  
Akram Ali ◽  
Vadim A. Potaskalov

The molecular shape of the title compound, C16H12O7, is bent around the central CH2—O bond. The two benzene rings are almost perpendicular to one another, making a dihedral angle of 87.78 (7)°. In the crystal, each molecule is linked to three others by three pairs of O—H...O hydrogen bonds, forming undulating sheets parallel to thebcplane and enclosingR22(8) ring motifs. The sheets are linked by C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional network.


2014 ◽  
Vol 70 (10) ◽  
pp. o1130-o1130 ◽  
Author(s):  
Wataru Furukawa ◽  
Munenori Takehara ◽  
Yoshinori Inoue ◽  
Chitoshi Kitamura

In an attempt to brominate 1,4-dipropoxy-9,10-anthraquinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The molecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intramolecular O—H...O hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H...O hydrogen bonds, Br...O contacts [3.240 (5) Å], and π–π stacking interactions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.


2015 ◽  
Vol 71 (10) ◽  
pp. o719-o720 ◽  
Author(s):  
Tomohiko Ishii ◽  
Tatsuya Senoo ◽  
Akihide Yoshihara ◽  
Kazuhiro Fukada ◽  
Genta Sakane

The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of D- and L-fructose (1,3,4,5,6-pentahydroxyhexan-2-one,arabino-hexulose or levulose), and it was confirmed that D-fructose (or L-fructose) formed β-pyranose with a2C5(or5C2) conformation. In the crystal, two O—H...O hydrogen bonds between the hydroxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral molecules into a column along theaaxis. The columns are linked by other O—H...O hydrogen bonds between D- and L-fructose molecules, forming a three-dimensional network.


2014 ◽  
Vol 70 (9) ◽  
pp. o1029-o1030
Author(s):  
Hakima Chicha ◽  
El Mostapha Rakib ◽  
Latifa Bouissane ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and ethoxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2) and C—C—O—C = −88.1 (2)°]. In the crystal, molecules are connected by N—H...N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H...O hydrogen bonds, forming a three-dimensional network.


2014 ◽  
Vol 70 (10) ◽  
pp. o1106-o1106
Author(s):  
Yong-Le Zhang ◽  
Chuang Zhang ◽  
Wei Guo ◽  
Jing Wang

In the title compound, C9H9N3OS, the plane of the benzene ring forms a dihedral angle of 33.40 (5)° with that of the triazole group. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the phenol –OH group and one of the unsubstituted N atoms of the triazole ring, resulting in chains along [010]. These chains are further extended into a layer parallel to (001) by weak C—H...N hydrogen-bond interactions. Aromatic π–π stacking [centroid–centroid separation = 3.556 (1) Å] between the triazole rings links the layers into a three-dimensional network.


2009 ◽  
Vol 65 (6) ◽  
pp. m683-m683 ◽  
Author(s):  
Li-Zhuang Chen

In the title compound, (C6H6NO2)2[SbCl5]·H2O, the SbIIIatom exhibits a distorted square-pyramidal coordination geometry. The crystal structure is stabilized by intermolecular N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds, forming an extended three-dimensional network.


2014 ◽  
Vol 70 (2) ◽  
pp. m53-m53 ◽  
Author(s):  
E. Govindan ◽  
Subramani Thirumurugan ◽  
Ayyakannu Sundaram Ganeshraja ◽  
Krishnamoorthy Anbalagan ◽  
A. SubbiahPandi

In the crystal structure of the title compound, (C12H9N2)2[ZnCl4]·H2O, the two independent 1,10-phenanthrolinium cations are bridged by the water molecule and the tetrahedral tetrachloridozincate anionviaN—H...O, O—H...Cl and N—H...Cl hydrogen bonds, forming chains along [100]. The chains are linkedviaC—H...Cl hydrogen bonds and a number of π–π interactions [centroid–centroid distances vary from 3.5594 (14) to 3.7057 (13) Å], forming a three-dimensional network. In each 1,10-phenanthrolinium cation, there is a short N—H...N interaction.


2015 ◽  
Vol 71 (7) ◽  
pp. o492-o493
Author(s):  
A. J. Ravi ◽  
A. C. Vinayaka ◽  
S. Jeyaseelan ◽  
M. P. Sadashiva ◽  
H. C. Devarajegowda

In the title compound, C18H15NO3, the isoxazole moiety adopts a shallow envelope conformation, with the C atom bearing the OH group displaced by 0.148 (1) Å from the mean plane through the other four atoms. The mean plane of this ring (all atoms) subtends dihedral angles of 87.19 (6) and 15.51 (7)° with the benzofuran ring system (r.m.s. deviation = 0.007 Å) and the 4-methylphenyl ring, respectively. In the crystal, molecules are linked by O—H...N hydrogen bonds, generating [001]C(5) chains, with adjacent molecules in the chain related byc-glide symmetry. Weak C—H...O interactions link the chains into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document