scholarly journals PhenylN-phenylcarbamate

2009 ◽  
Vol 65 (6) ◽  
pp. o1363-o1363 ◽  
Author(s):  
Durre Shahwar ◽  
M. Nawaz Tahir ◽  
M. Sharif Mughal ◽  
Muhammad Akmal Khan ◽  
Naeem Ahmad

In the title compound, C13H11NO2, the aromatic rings are oriented at a dihedral angle of 42.52 (12)°. The crystal structure is stabilized by intermolecular N—H...O hydrogen bonds, which form infinite one-dimensional polymeric chains extending along theaaxis. C—H...π interactions between the aromatic rings are also present.

2006 ◽  
Vol 62 (4) ◽  
pp. o1380-o1381 ◽  
Author(s):  
M. Khawar Rauf ◽  
Amin Badshah ◽  
Ulrich Flörke ◽  
Aamer Saeed

In the molecule of the title compound, C14H10Cl2N2OS, the dihedral angle between the two aromatic rings is 38.58 (6)°. In the crystal structure, centrosymmetric dimers are formed via intermolecular N—H...S hydrogen bonds [N...S = 3.4798 (16) Å]. These dimeric units are, in turn, connected by weak intermolecular C—H...O hydrogen bonds, forming one-dimensional chains along [100].


2007 ◽  
Vol 63 (3) ◽  
pp. o1082-o1083
Author(s):  
Zong-Sheng Li ◽  
Jian-She Chai

In the title compound, C14H12N2O3, the dihedral angle between the two aromatic rings is 86.13 (15)°. Intermolecular N—H...O hydrogen bonds [N...O = 2.886 (3) Å and N—H...O = 174 (3)°] between the NH2 and C=O groups link the molecules into a one-dimensional ribbon augmented by secondary N—H...O interactions [N...O = 3.105 (4) Å and N—H...O = 154 (3)°] involving NH2 and NO2 groups. Adjacent chains are linked via π–π interactions.


2012 ◽  
Vol 68 (6) ◽  
pp. o1816-o1816
Author(s):  
Ji-Lai Liu ◽  
Ming-Hui Sun ◽  
Jing-Jun Ma

The title compound, C15H14N2O2, was obtained from the reaction of 3-hydroxybenzaldhyde and 4-methylbenzohydrazide in methanol. In the molecule, the benzene rings form a dihedral angle of 2.9 (3)°. In the crystal, N—H...O and O—H...O hydrogen bonds link the molecules into layers parallel to (101). The crystal packing also exhibits π–π interactions between the aromatic rings [centroid–centroid distance = 3.686 (4) Å].


2014 ◽  
Vol 70 (9) ◽  
pp. o919-o920
Author(s):  
Qing-Ming Wang ◽  
Ming-Juan Zhu ◽  
Jin-Ming Yang ◽  
Shan-Shan Wang ◽  
Yan-Fang Shang

In the title compound, C17H21ClNO4P·C3H7NO, the dihedral angle formed by the aromatic rings is 83.98 (7)°. In the crystal, O—H...O, N—H...O and C—H...O hydrogen bonds link the molecules into double layers parallel to (011).


IUCrData ◽  
2016 ◽  
Vol 1 (7) ◽  
Author(s):  
H. S. Yeshwanthkumar ◽  
P. Nagendra ◽  
B. P. Siddaraju ◽  
K. C. Chaluvaraju ◽  
K. Byrappa ◽  
...  

In the title compound, C14H11Cl2NO2, the dihedral angle between the phenyl rings is 8.60 (17)° and the nitro group makes a dihedral anle of 29.4 (4)° with its attached ring. The crystal structure features C—H...O hydrogen bonds and π–π interactions.


Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2015 ◽  
Vol 71 (10) ◽  
pp. 1140-1142 ◽  
Author(s):  
Hong-Shun Sun ◽  
Yu-long Li ◽  
Hong Jiang ◽  
Ning Xu ◽  
Hong Xu

In the title compound, C27H21FN2O4, the mean planes of the indole ring systems (r.m.s. deviations = 0.0263 and 0.0160 Å) are approximately perpendicular to one another, making a dihedral angle of 84.0 (5)°; the fluorobenzene ring is twisted with respect to the mean planes of the two indole ring systems at 89.5 (5) and 84.6 (3)°. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, which are further linked by N—H...O hydrogen bonds into supramolecular chains propagated along theb-axis direction. Weak C—H...π interactions are observed between neighbouring chains.


Author(s):  
M. Suresh ◽  
M. Syed Ali Padusha ◽  
J. Josephine Novina ◽  
G. Vasuki ◽  
Vijayan Viswanathan ◽  
...  

In the title compound, C12H14N2O2S2, the dihydropyrimidine ring adopts a sofa conformation, with the C atom bearing the thienyl ring lying above the plane of the five remaining approximately coplanar (r.m.s. deviation = 0.0405 Å) atoms of the ring. The dihedral angle between the five near coplanar atoms of the ring and the thienyl ring is 89.78 (11)°. In the crystal, molecules are linked into a supramolecular chain along [100]viaN—H...O(carbonyl) hydrogen bonds. Inversion-related chains are linked into double chainsviaN—H...S(thione) hydrogen bonds. The three-dimensional architecture also features methyl–thienyl C—H...π interactions.


2014 ◽  
Vol 70 (9) ◽  
pp. o1065-o1066
Author(s):  
Hong Dae Choi ◽  
Uk Lee

In the title compound, C16H12ClFO3S, the dihedral angle between the plane of the benzofuran ring system [r.m.s. deviation = 0.007 (1) Å] and that of the 4-fluorophenyl ring is 76.11 (5)°. In the crystal, molecules are linked into [010] chainsviatwo different inversion-generated pairs of C—H...O hydrogen bonds. The crystal structure also exhibits weak π–π interactions between the benzene and furan rings of neighbouring molecules [centroid–centroid distance = 3.820 (2) Å].


2015 ◽  
Vol 71 (6) ◽  
pp. o416-o416 ◽  
Author(s):  
Muhammad Salim ◽  
Muhammad Nawaz Tahir ◽  
Munawar Ali Munawar ◽  
Muhammad Shahid ◽  
Hazoor Ahmad Shad

In the title compound, C15H14ClNO, which is isostructural with its bromo analogue [Tahiret al.(2012).Acta Cryst., E68, o2730], the dihedral angle between the planes of the aromatic rings is 2.71 (7)° and an intramolecular O—H...N hydrogen bond closes anS(6) ring. In the crystal, extremely weak C—H...π interactions link the molecules into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document