double layers
Recently Published Documents


TOTAL DOCUMENTS

2058
(FIVE YEARS 265)

H-INDEX

76
(FIVE YEARS 8)

Soft Matter ◽  
2022 ◽  
Author(s):  
Filipe Henrique ◽  
Pawel J. Zuk ◽  
Ankur Gupta

The effect of arbitrary pore size and Debye length on the charging dynamics of electrical double layers inside a cylindrical pore is computed, and its impact on capacitance, charging timescale, and transmission line circuit is highlighted.


Author(s):  
Anton P. Novikov ◽  
Alexey A. Bezdomnikov ◽  
Mikhail S. Grigoriev ◽  
Konstantin E. German

The molecular and crystal structures of the title compound, C8H4F5NO, were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The title compound was synthesized by a new method at the interface of aqueous solutions of LiOH and pentafluorophenylacetonitrile. In the crystal, hydrogen bonds and π–halogen interactions connect the molecules into double layers. Analysis of the Hirshfeld surface showed that the most important contributions to the crystal packing are made by F...F (30.4%), C...F/F...C (22.9%), O...H/H...O (14.9%), H...F/F...H (14.0%) and H...H (10.2%) contacts. The Hirshfeld surfaces of analogues of the title compound were compared and the effect of perfluorination on the crystal packing was shown.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 655
Author(s):  
Alex Yong Kwang Tan ◽  
Chi-Keong Tan

This paper examines the thermal comfort of temporary shelters under Taiwan’s subtropical summer conditions. The temperature within the tent was higher compared to the standard configuration of the temporary shelter, but its relative humidity was lower. During the time period 09:30 to 14:30, temperatures at the center of the tent at positions 0.10 m, 1.10 m and 1.70 m above ground were 3.1 °C, 5.5 °C and 6.0 °C higher, respectively, than the average ambient temperature of 36.3 °C. However, temperatures for the standard configuration at similar central positions of 0.10 m, 1.10 m and 1.70 m above ground were 1.2 °C, 0.5 °C and 0.7 °C lower, respectively, than the same average ambient. In the afternoon, the standard configuration (PMV of 3.14 and PPD of 100) performed better than the tent (PMV of 5.03 and PPD of 100), although neither achieved thermal comfort. Various experimental configurations showed that double layers of roof lowered temperatures, but the thermal comfort (PMV of 3.32 and PPD of 100) remained unchanged. Various computational configurations showed that closing the door and one window and installing a mechanical fan of average speed 2.75 m/s lowered the temperature and increased the air speed to achieve thermal comfort with PMV and PPD values of 1.49 and 50, respectively.


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Andreas Sinner ◽  
Yurii E. Lozovik ◽  
Klaus Ziegler

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3222
Author(s):  
Jiaxuan Zheng ◽  
Siyi An ◽  
Yongjun Jian

Here, space electroosmotic thrusters in a rigid nanochannel with high wall zeta potentials are investigated numerically, for the first time, considering the effect of finite size of the ionic species. The effect, which is called a steric effect, is often neglected in research about micro/nano thrusters. However, it has vital influences on the electric potential and flow velocity in electric double layers, so that the thruster performances generated by the fluid motion are further affected. These performances, including thrust, specific impulse, thruster efficiency, and the thrust-to-power ratio, are described by using numerical algorithms, after obtaining the electric potential and velocity distributions under high wall zeta potentials ranging from −25.7 mV to −128.5 mV. As expected, the zeta potential can promote the development of thruster performances so as to satisfy the requirement of space missions. Moreover, for real situation with consideration of the steric effect, the thruster thrust and efficiency significantly decrease to 5–30 micro Newtons and 80–90%, respectively, but the thrust-to-power ratio is opposite, and expends a short specific impulse of about 50–110 s.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Haolan Tao ◽  
Cheng Lian ◽  
Hao Jiang ◽  
Chunzhong Li ◽  
Honglai Liu ◽  
...  

2021 ◽  
Vol 56 ◽  
pp. 97-105
Author(s):  
Theresa Hennig ◽  
Michael Kühn

Abstract. The simulation of uranium migration through the Swiss Opalinus Clay is used as an example to quantify the influence of varying values of a stability constant in the underlying thermodynamic database on the migration lengths for the repository scale. Values for the stability constant of the neutral, ternary uranyl complex Ca2UO2(CO3)3 differ in literature by up to one order of magnitude. Within the studied geochemical system, either the neutral or the anionic complex CaUO2(CO3)32- is the predominant one, depending on the chosen value for the neutral complex. This leads to a changed interaction with the diffuse double layers (DDL) enveloping the clay minerals and thus can potentially influence the diffusive transport of uranium. Hence, two identical scenarios only differing in the value for the stability constant of the Ca2UO2(CO3)3 complex were applied in order to quantify and compare the migration lengths of uranium on the host rock scale (50 m) after a simulation time of one million years. We ran multi-component diffusion simulations for the shaly and sandy facies in the Opalinus Clay. A difference in the stability constant of 1.33 log units changes the migration lengths by 5 to 7 m for the sandy and shaly facies, respectively. The deviation is caused by the anion exclusion effect. However, with a maximum diffusion distance of 22 m, the influence of the stability constant of the Ca2UO2(CO3)3 complex on uranium migration in the Opalinus Clay is negligible on the host rock scale.


Sign in / Sign up

Export Citation Format

Share Document