scholarly journals MATSAS: a small-angle scattering computing tool for porous systems

2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Amirsaman Rezaeyan ◽  
Vitaliy Pipich ◽  
Andreas Busch

MATSAS is a script-based MATLAB program for analysis of X-ray and neutron small-angle scattering (SAS) data obtained from various facilities. The program has primarily been developed for sedimentary rock samples but is equally applicable to other porous media. MATSAS imports raw SAS data from .xls(x) or .csv files, combines small-angle and very small angle scattering data, subtracts the sample background, and displays the processed scattering curves in log–log plots. MATSAS uses the polydisperse spherical (PDSP) model to obtain structural information on the scatterers (scattering objects); for a porous system, the results include specific surface area (SSA), porosity (Φ), and differential and logarithmic differential pore area/volume distributions. In addition, pore and surface fractal dimensions (D p and D s, respectively) are obtained from the scattering profiles. The program package allows simultaneous and rapid analysis of a batch of samples, and the results are then exported to .xlsx and .csv files with separate spreadsheets for individual samples. MATSAS is the first SAS program that delivers a full suite of pore characterizations for sedimentary rocks. MATSAS is an open-source package and is freely available at GitHub (https://github.com/matsas-software/MATSAS).

1981 ◽  
Vol 4 (4) ◽  
pp. 225-231 ◽  
Author(s):  
J. Pleštil ◽  
J. Mikeš ◽  
K. Dušek ◽  
Ju. M. Ostanevich ◽  
A. B. Kunchenko

1983 ◽  
Vol 16 (1) ◽  
pp. 42-46 ◽  
Author(s):  
O. Glatter ◽  
P. Laggner

The possibilities of obtaining structural information from X-ray small-angle scattering experiments with `white' polychromatic synchrotron radiation using line collimation are investigated by numerical simulation. Theoretical scattering curves of geometrical models were smeared with the appropriate wavelength distributions and slit-length functions, afflicted by statistical noise, and then evaluated by identical methods as normally used for experimental data, as described previously [program ITP; Glatter (1977). J. Appl. Cryst. 10, 415–421]. It is shown that even for a wavelength distribution of 50% half width, the information content is not limited to the parameters derived from the central part of the scattering curves, i.e. the radius of gyration and the zero-angle intensity, but also allows qualitative information on particle shape via the distance distribution function p(r). By a `hinge-bending model' consisting of two cylinders linked together at different angles it is demonstrated that changes in the radius of gyration amounting to less than 5% can be detected and quantified, and the qualitative changes in particle shape be reproduced.


2018 ◽  
Vol 63 (6) ◽  
pp. 874-882 ◽  
Author(s):  
A. A. Semenov ◽  
V. V. Volkov ◽  
A. V. Zabrodin ◽  
V. V. Gorlevskii ◽  
M. S. Sheverdyaev ◽  
...  

2020 ◽  
Vol 22 (22) ◽  
pp. 12713-12723 ◽  
Author(s):  
Lukas Ludescher ◽  
Roland Morak ◽  
Stephan Braxmeier ◽  
Florian Putz ◽  
Nicola Hüsing ◽  
...  

Apparent strain artifacts resulting from the evaluation of small-angle X-ray scattering data superimpose the actual adsorption induced deformation in silica with hierarchical porosity. These artifacts can be corrected for by detailed modelling.


2001 ◽  
Author(s):  
Karen K. Siu ◽  
Andrei Y. Nikulin ◽  
James Hester ◽  
Andreas K. Freund ◽  
Tetsuya Ishikawa

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Ge Wang ◽  
Wenxiang Cong ◽  
Haiou Shen ◽  
Yu Zou

Although x-ray imaging is widely used in biomedical applications, biological soft tissues have small density changes, leading to low contrast resolution for attenuation-based x-ray imaging. Over the past years, x-ray small-angle scattering was studied as a new contrast mechanism to enhance subtle structural variation within the soft tissue. In this paper, we present a detection method to extract this type of x-ray scattering data, which are also referred to as dark-field signals. The key idea is to acquire an x-ray projection multiple times with varying collimation before an x-ray detector array. The projection data acquired with a collimator of a sufficiently high collimation aspect ratio contain mainly the primary beam with little scattering, while the data acquired with an appropriately reduced collimation aspect ratio include both the primary beam and small-angle scattering signals. Then, analysis of these corresponding datasets will produce desirable dark-field signals; for example, via digitally subtraction. In the numerical experiments, the feasibility of our dark-field detection technology is demonstrated in Monte Carlo simulation. The results show that the acquired dark field signals can clearly reveal the structural information of tissues in terms of Rayleigh scattering characteristics.


2012 ◽  
Vol 45 (3) ◽  
pp. 587-593 ◽  
Author(s):  
Haiguang Liu ◽  
Alexander Hexemer ◽  
Peter H. Zwart

Small-angle X-ray and neutron scattering experiments are broadly applied to study biomolecular structure and dynamics. This article presents theSmall Angle Scattering ToolBox(SASTBX), which provides a wide-ranging functionality for the analysis of biological small-angle scattering data, from data reduction to model reconstruction and refinement. TheSASTBXis an open-source package, which is freely available at http://sastbx.als.lbl.gov.


Sign in / Sign up

Export Citation Format

Share Document