Self-assembly of a cobalt(II)-based metal–organic framework as an effective water-splitting heterogeneous catalyst for light-driven hydrogen production

2020 ◽  
Vol 76 (6) ◽  
pp. 616-624
Author(s):  
Yong Dou ◽  
Lu Yang ◽  
Lan Qin ◽  
Yunhui Dong ◽  
Zhen Zhou ◽  
...  

The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self-assembly of a CoII-based metal–organic framework (MOF) constructed from 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetrabenzoic acid [or tetrakis(4-carboxyphenyl)ethylene, H4TCPE] and 4,4′-bipyridyl (bpy) as four-point- and two-point-connected nodes, respectively. This material, namely, poly[(μ-4,4′-bipyridyl)[μ8-4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)], [Co(C30H16O8)(C10H8N2)] n , crystallized as dark-red block-shaped crystals with high crystallinity and was fully characterized by single-crystal X-ray diffraction, PXRD, IR, solid-state UV–Vis and cyclic voltammetry (CV) measurements. The redox-active CoII atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light-driven H2 production has been explored in a three-component system with fluorescein as photosensitizer and trimethylamine as the sacrificial electron donor, and the initial volume of H2 production is about 360 µmol after 12 h irradiation.

ACS Omega ◽  
2021 ◽  
Author(s):  
Juan M. Garcia-Garfido ◽  
Javier Enríquez ◽  
Ignacio Chi-Durán ◽  
Iván Jara ◽  
Leonardo Vivas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document