scholarly journals Crystal structure of (E)-5-benzyloxy-2-{[(4-nitrophenyl)imino]methyl}phenol

2015 ◽  
Vol 71 (12) ◽  
pp. o1000-o1001 ◽  
Author(s):  
Nadir Ghichi ◽  
Mohamed Amine Benaouida ◽  
Ali Benboudiaf ◽  
Hocine Merazig

In the title compound, C20H16N2O4, the molecule adopts anEconformation about the N=C bond. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. The nitrobenzene and benzyloxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11)°, respectively, and to one another by 31.40 (12)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming zigzag chains along [001]. Within the chains there are C—H...π interactions present. The chains are linkedviaπ–π interactions [inter-centroid distance = 3.7048 (15) Å], forming slabs parallel to thebcplane.

Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2015 ◽  
Vol 71 (12) ◽  
pp. 1545-1547
Author(s):  
Koji Kubono ◽  
Kimiko Kado ◽  
Yukiyasu Kashiwagi ◽  
Keita Tani ◽  
Kunihiko Yokoi

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular O—H...N hydrogen bond involving the hydroxy group and a pyridine N atom forming anS(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds forming inversion dimers with anR44(10) ring motif. The dimers are linked by C—H...N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H...π and π–π interactions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).


2017 ◽  
Vol 73 (8) ◽  
pp. 1151-1153
Author(s):  
Suwadee Jiajaroen ◽  
Kittipong Chainok ◽  
Filip Kielar

In the title compound, C13H10FN3O2, the molecule has an E conformation with respect to the C=N bond of the hydrazone bridge. The dihedral angle between the isonicotinoyl and fluorophenol moieties is 4.03 (4)°, and an intramolecular O—H...N hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked by N—H...N and C—H...N hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H...O hydrogen bonds, resulting in the formation of layers lying parallel to the ab plane. The crystal structure also features π–π interactions [centroid-to-centroid distance = 3.6887 (8) Å].


Author(s):  
R. A. Nagalakshmi ◽  
J. Suresh ◽  
S. Maharani ◽  
R. Ranjith Kumar ◽  
P. L. Nilantha Lakshman

The title compound, C23H21N3, comprises a 2-amino-3-cyanopyridine ring fused with a cyclopentane ring. The later adopts an envelope conformation with the central methylene C atom as the flap. The benzyl and andp-tolyl rings are inclined to one another by 56.18 (15)°, and to the pyridine ring by 81.87 (14) and 47.60 (11)°, respectively. In the crystal, molecules are linked by pairs of N—H...Nnitrilehydrogen bonds, forming inversion dimers with anR22(12) ring motif. The dimers are linked by C—H...π and π–π interactions [centroid–centroid distance = 3.7211 (12) Å], forming a three-dimensional framework.


2015 ◽  
Vol 71 (9) ◽  
pp. o636-o636
Author(s):  
Nadiah Ameram ◽  
Farook Adam

In the title compound, C16H17N3OS, a benzoyl thiourea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intramolecular N—H...O hydrogen bond present forming anS(6) ring motif. In the crystal, molecules are linkedviapairs of N—H...N hydrogen bonds, forming inversion dimers, which are reinforced by pairs of C—H...S hydrogen bonds. The dimers are linkedviaC—H...π interactions, forming ribbons along [010].


Author(s):  
Ying Liang ◽  
Li-Qiao Shi ◽  
Zi-Wen Yang

In the title compound, C19H13ClF2N2O2, the conformation of the N—H bond in the amide segment isantito the C=O bond. The molecule is not planar, with dihedral angles between the central benzene ring and the outer benzene and pyridyl rings of 73.35 (7) and 81.26 (6)°, respectively. A weak intramolecular C—H...O hydrogen bond occurs. In the crystal, N—H...N, C—H...O and C—H...F hydrogen bonds lead to the formation of dimers. The N—H...N inversion dimers are linked by π–π contacts between adjacent pyridine rings [centroid–centroid = 3.8541 (12) Å] and C—H...π interactions. These contacts combine to stack the molecules along theaaxis.


2015 ◽  
Vol 71 (12) ◽  
pp. o991-o992
Author(s):  
Kamel Ouari

In the title compound, C12H8BrN3O, the 4-bromophenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linkedviaN—H...N and O—H...Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by π–π interactions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related molecules, forming a three-dimensional structure.


2012 ◽  
Vol 68 (4) ◽  
pp. o1084-o1084
Author(s):  
D. Kannan ◽  
M. Bakthadoss ◽  
R. Madhanraj ◽  
S. Murugavel

In the title compound, C25H22N2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formylbenzene and methylbenzene rings. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond, which generates anS(5) ring motif. The crystal packing is stabilized by C—H...O hydrogen bonds, which generateC(11) chains along thebaxis. The crystal packing is further stabilized by π–π interactions [centroid–centroid distance = 3.927 (2) Å].


2012 ◽  
Vol 68 (8) ◽  
pp. o2574-o2574 ◽  
Author(s):  
B. Thimme Gowda ◽  
Sabine Foro ◽  
Sharatha Kumar

In the crystal structure of the title compound, C10H12N2OS, the conformation of the two N—H bonds areantito each other. The amide C=O and the C=S are are alsoantito each other. The N—H bond adjacent to the benzene ring issynto them-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms C—C(O)N—C—N; maximum deviation 0.029 (2) Å] is 14.30 (7)°. There is an intramolecular N—H...O hydrogen bond generating anS(6) ring motif. In the crystal, the molecules are linkedviaN—H...) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].


IUCrData ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Manisha Choudhury ◽  
Vijayan Viswanathan ◽  
Ajay Kumar Timiri ◽  
Barij Nayan Sinha ◽  
Venkatesan Jayaprakash ◽  
...  

In the title compound, C13H15N5O2S, the acetamide N—C(=O)—C plane makes dihedral angles of 30.51 (11) and 51.93 (11)°, respectively, with the benzene ring and the pyrimidine ring. The dihedral angle between the benzene and pyrimidine rings is 43.40 (6)°. There is an intramolecular N—H...N hydrogen bond with an S(7) ring motif. In the crystal, molecules are linked by pairs of intermolecular N—H...N hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The molecules are further linked by intermolecular N—H...O hydrogen bonds, forming a C(9) chain along [100]. Intermolecular C—H...π and N—H...π interactions are also observed.


Sign in / Sign up

Export Citation Format

Share Document