pyridine ring
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 110)

H-INDEX

35
(FIVE YEARS 3)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 371
Author(s):  
Tibor Csupász ◽  
Dániel Szücs ◽  
Ferenc Krisztián Kálmán ◽  
Oldamur Hollóczki ◽  
Anikó Fekete ◽  
...  

A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) was synthesized possessing an etheric O-atom opposite to the pyridine ring, to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn = −log(Mn(II)), cL = cMn(II) = 0.01 mM. pH = 7.4) remains unaffected (pMn = 8.69), compared to the [Mn(3,9-PC2A)] (pMn = 8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvents (kex298 = 5.3 ± 0.4 ´ 107 s−1) than [Mn(3,9-PC2A)] (kex298 = 1.26´108 s−1). These mild differences are rationalized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1 = 2.81 ± 0.07 M−1 s−1) than that of the complexes of diacetates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range), as well as by relaxometry (mM range). However, a 600-fold excess of EDTA (pH = 7.4) or a mixture of essential metal ions, propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 °C the parent H23,9-PC2A performs slightly better. Ultimately, the H23,9-OPC2A shows advantageous features for further ligand designs for bifunctional chelators.


Author(s):  
Koji Yamaguchi ◽  
Hajime Miyaguchi ◽  
Youkichi Ohno ◽  
Yoshimasa Kanawaku

Abstract Purpose Zolpidem (ZOL) is a hypnotic sometimes used in drug-facilitated crimes. Understanding ZOL metabolism is important for proving ZOL intake. In this study, we synthesized standards of hydroxyzolpidems with a hydroxy group attached to the pyridine ring and analyzed them to prove their presence in postmortem urine. We also searched for novel ZOL metabolites in the urine sample using liquid chromatography–triple quadrupole mass spectrometry (LC-QqQMS) and liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-QqTOFMS). Methods 7- and 8-Hydroxyzolpidem (7OHZ and 8OHZ, respectively) were synthesized and analyzed using LC-QqQMS. Retention times were compared between the synthetic standards and extracts of postmortem urine. To search for novel ZOL metabolites, first, the urine extract was analyzed with data-dependent acquisition, and the peaks showing the characteristic fragmentation pattern of ZOL were selected. Second, product ion spectra of these peaks at various collision energies were acquired and fragments that could be used for multiple reaction monitoring (MRM) were chosen. Finally, MRM parameters were optimized using the urine extract. These peaks were also analyzed using LC-QqTOFMS. Results The presence of 7OHZ and 8OHZ in urine was confirmed. The highest peak among hydroxyzolpidems was assigned to 7OHZ. The novel metabolites found were zolpidem dihydrodiol and its glucuronides, cysteine adducts of ZOL and dihydro(hydroxy)zolpidem, and glucuronides of hydroxyzolpidems. Conclusions The presence of novel metabolites revealed new metabolic pathways, which involve formation of an epoxide on the pyridine ring as an intermediate.


2022 ◽  
Author(s):  
Zhiqiang Lu ◽  
yanzhi li ◽  
yi ru ◽  
shujian yang ◽  
chu hao ◽  
...  

A novel tactic for regioselective O-alkylation of 2-pyridones has been realized through palladium catalysis in moderate to high yields. The coordination effect between palladium and nitrogen on pyridine ring plays...


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1396
Author(s):  
Min Zhang ◽  
Dong Peng ◽  
Feifei Peng ◽  
Anwei Huang ◽  
Kaiqiang Song ◽  
...  

The Al coatings were electrodeposited on the Cu substrate from AlCl3-EMIC ionic liquid (AlCl3:EMIC = 2:1 molar ratio) containing three cyanopyridine additives with different positions of the substituent group on the pyridine ring, which were 2-cyanopyridine, 3-cyanopyridine, and 4-cyanopyridine. The effects of cyanopyridine additives on the deposition potential, morphology, brightness, and corrosion properties of Al coatings were investigated. It was considered that the deposition potential of Al shifted to more negative overpotentials, the quality of Al coatings was promoted, and the corrosion property was improved by the cyanopyridine additives to a varying degree. Especially in the presence of 4-cyanopyridine, the flattest mirror bright Al coating was obtained, which had the smallest homogeneous nanocrystal grain size and strongest Al (200) crystallographic orientation. The average roughness Ra value was as low as 31 nm compared to that in the absence of cyanopyridine additives, which was 417 nm. Furthermore, the corrosion current density of the bright Al coating was three orders of magnitude lower than the rough Al coating, which resulted from the dense nanocrystal structure.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6824
Author(s):  
Boris A. Trofimov ◽  
Pavel A. Volkov ◽  
Anton A. Telezhkin

Publications covering a new easy metal-free functionalization of pyridinoids (pyridines, quinolines, isoquinolines, acridine) under the action of the system of electron-deficient acetylenes (acetylenecarboxylic acid esters, acylacetylenes)/P-nucleophiles (phosphine chalcogenides, H-phosphonates) are reviewed. Special attention is focused on a SNH reaction of the regioselective cross-coupling of pyridines with secondary phosphine chalcogenides triggered by acylacetylenes to give 4-chalcogenophosphorylpyridines. In these processes, acetylenes act as three-modal adjuvants (i) activating the pyridine ring towards P-nucleophiles, (ii) deprotonating the P-H bond and (iii) facilitating the nucleophilic addition of the P-centered anion to a heterocyclic moiety followed by the release of the selectively reduced acetylenes (E-alkenes).


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6599
Author(s):  
Hina Mehmood ◽  
Muhammad Asif Iqbal ◽  
Muhammad Naeem Ashiq ◽  
Ruimao Hua

In the presence of Cs2CO3, the first simple, efficient, and one-pot procedure for the synthesis of 3,5-diaryl pyridines via a variety of aromatic terminal alkynes with benzamides as the nitrogen source in sulfolane is described. The formation of pyridine derivatives accompanies the outcome of 1,3-diaryl propenes, which are also useful intermediates in organic synthesis. Thus, pyridine ring results from a formal [2+2+1+1] cyclocondensation of three alkynes with benzamides, and one of the alkynes provides one carbon, whilst benzamides provide a nitrogen source only. A new transformation of alkynes as well as new utility of benzamide are found in this work.


Author(s):  
Nilesh Takale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Rajarajan Govindasamy

Commercially viable manufacturing process for Flecainide Acetate (I) conforming to regulatory specification and cost effective process is reported. Specifically, an improved process for the preparation of Flecainide Acetate allows isolation of anhydrous hydrochloride salt of Compound III, which facilitates the reduction of the pyridine ring with the only catalytic amount of platinum on carbon within 2 hours Therefore, simplifies the synthesis and isolation of Flecainide acetate on a commercial scale to a considerable extent.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1240
Author(s):  
Luka Fotović ◽  
Vladimir Stilinović

We performed a structural study of N-alkylated halogenopyridinium cations to examine whether choice of the N-substituent has any considerable effect on the halogen bonding capability of the cations. For that purpose, we prepared a series of N-ethyl-3-halopyridinium iodides and compared them with their N-methyl-3-halopyridinium analogues. Structural analysis revealed that N-ethylated halogenopyridinium cations form slightly shorter C−X⋯I− halogen bonds with iodide anion. We have also attempted synthesis of ditopic symmetric bis-(3-iodopyridinium) dications. Although successful in only one case, the syntheses have afforded two novel ditopic asymmetric monocations with an iodine atom bonded to the pyridine ring and another on the aliphatic N-substituent. Here, the C−I⋯I− halogen bond lengths involving pyridine iodine atom were notably shorter than those involving an aliphatic iodine atom as a halogen bond donor. This trend in halogen bond lengths is in line with the charge distribution on the Hirshfeld surfaces of the cations—the positive charge is predominantly located in the pyridine ring making the pyridine iodine atom σ-hole more positive than the one on the alkyl chan.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106202118
Author(s):  
Joel A. Rankin ◽  
Shramana Chatterjee ◽  
Zia Tariq ◽  
Satyanarayana Lagishetty ◽  
Benoît Desguin ◽  
...  

Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.


Sign in / Sign up

Export Citation Format

Share Document