scholarly journals Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate

2019 ◽  
Vol 75 (12) ◽  
pp. 1853-1856
Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4 −. In the compound, the acid and base molecules are held together by a short hydrogen bond [O...O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H...O and C—H...O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H...O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and d norm were generated to visualize the intermolecular interactions.

2020 ◽  
Vol 76 (11) ◽  
pp. 1701-1707
Author(s):  
Kazuma Gotoh ◽  
Hiroyuki Ishida

The structures of the four isomeric compounds of 6-methylquinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitrobenzoic acid–6-methylquinoline (1/1), (I), 2-chloro-5-nitrobenzoic acid–6-methylquinoline (1/1), (II), 3-chloro-2-nitrobenzoic acid–6-methylquinoline (1/1), (III), and 4-chloro-2-nitrobenzoic acid–6-methylquinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base molecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O...N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π–π interactions between the quinoline ring system and the benzene ring of the acid molecule are observed. In addition, a π–π interaction between the benzene rings of adjacent acid molecules and a C—H...O hydrogen bond are observed in the crystal of (I), and C—H...O hydrogen bonds and O...Cl contacts occur in the crystals of (III) and (IV). These intermolecular interactions connect the acid and base molecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over d norm and shape index were generated to visualize the weak intermolecular interactions.


Author(s):  
Hiroyuki Ishida

The structures of the six hydrogen-bonded 1:1 compounds of 4-methylquinoline (C10H9N) with chloro- and nitro-substituted benzoic acids (C7H4ClNO4), namely, 4-methylquinolinium 2-chloro-4-nitrobenzoate, C10H10N+·C7H3ClNO4 −, (I), 4-methylquinoline–2-chloro-5-nitrobenzoic acid (1/1), C10H9N·C7H4ClNO4, (II), 4-methylquinolinium 2-chloro-6-nitrobenzoate, C10H9.63N0.63+·C7H3.37ClNO4 0.63−, (III), 4-methylquinolinium 3-chloro-2-nitrobenzoate, C10H9.54N0.54+·C7H3.46ClNO4 0.54−, (IV), 4-methylquinolinium 4-chloro-2-nitrobenzoate, C10H10N+·C7H3ClNO4 −, (V), and 4-methylquinolinium 5-chloro-2-nitrobenzoate, C10H10N+·C7H3ClNO4 −, have been determined at 185–190 K. In each compound, the acid and base molecules are linked by a short hydrogen bond between a carboxy (or carboxylate) O atom and an N atom of the base. The O...N distances are 2.5652 (14), 2.556 (3), 2.5485 (13), 2.5364 (13), 2.5568 (13) and 2.5252 (11) Å, respectively, for compounds (I)–(VI). In the hydrogen-bonded acid–base units of (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.37 (3):0.63 (3) and 0.46 (3):0.54 (4), respectively, for (III) and (IV). The H atoms in the hydrogen-bonded units of (I), (V) and (VI) are located at the N-atom site, while the H atom in (II) is located at the O-atom site. In all the crystals of (I)–(VI), π–π stacking interactions between the quinoline ring systems and C—H...O hydrogen bonds are observed. Similar layer structures are constructed in (IV)–(VI) through these interactions together with π–π interactions between the benzene rings of the adjacent acid molecules. A short Cl...Cl contact and an N—O...π interaction are present in (I), while a C—H...Cl hydrogen bond and a π–π interaction between the benzene ring of the acid molecule and the quinoline ring system in (II), and a C—H...π interaction in (III) are observed. Hirshfeld surfaces for the title compounds mapped over d norm and shape index were generated to visualize the weak intermolecular interactions.


2015 ◽  
Vol 71 (2) ◽  
pp. o139-o139 ◽  
Author(s):  
Tomohiko Ishii ◽  
Tatsuya Senoo ◽  
Taro Kozakai ◽  
Kazuhiro Fukada ◽  
Genta Sakane

The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of D- and L-allose. It was confirmed that D-allose (L-allose) formed β-pyranose with a4C1(1C4) conformation in the crystal. In the crystal, molecules are linked by O—H...O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic β-D,L-allose is 739.36 (3) Å3, which is about 10 Å3smaller than that of chiral β-D-allose [V= 751.0 (2) Å3].


2013 ◽  
Vol 69 (2) ◽  
pp. o217-o217 ◽  
Author(s):  
Augusto Rivera ◽  
Diego Quiroga ◽  
Jaime Ríos-Motta ◽  
Monika Kučeraková ◽  
Michal Dušek

In the crystal structure of the title compound, C21H24F2N2O2, there are two intramolecular O—H...N hydrogen bonds involving the N atoms of the imidazolidine ring and the hydroxy groups. The crystal studied was amesocompound obtained by the reaction of the aminal (2S,7R,11S,16R)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]cosane with 4-fluorophenol. The imidazolidine ring has a twisted conformation with a CH—CH—N—CH2torsion angle of 44.99 (14)° and, surprisingly, the lone pairs of the N atoms are disposed in asynisomerism, making the title compound an exception to the typical `rabbit-ear effect' in 1,2-diamines. In the crystal, molecules are linkedviaC—H...F hydrogen bonds, forming chains along thec-axis direction. These chains are linkedviaanother C—H...F hydrogen bond, forming a three-dimensional network.


IUCrData ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Abdelhanine Essaghouani ◽  
Younos Bouzian ◽  
El Mokhtar Essassi ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The title compound, C17H16N2O, consists of a benzodiazepin-2-one moiety substituted with a phenyl ring and an ethyl group. The seven-membered diazepine ring has a boat conformation and the fused benzene ring is nearly perpendicular to the phenyl ring, as indicated by the dihedral angle of 74.90 (8)°. The atoms of the ethyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.603 (15):0.397 (15). In the crystal, molecules are linked by pairs of C—H...O hydrogen bonds, forming inversion dimers. The dimers are linkedviaa further C—H...O hydrogen bond, forming layers parallel to (001), which are in turn linked by C—H...π interactions, forming a three-dimensional structure.


2007 ◽  
Vol 63 (11) ◽  
pp. o4403-o4403
Author(s):  
Shu-Ping Yang ◽  
Li-Jun Han ◽  
Da-Qi Wang ◽  
Hai-Tao Xia

Molecules of the title compound, C14H12ClNO2, are linked by one C—H...Cl hydrogen bond, forming a C(13) chain running parallel to the [010] direction; these chains are linked by further C—H...π and C—H...Cl hydrogen bonds, resulting in a three-dimensional network structure.


2012 ◽  
Vol 68 (6) ◽  
pp. o1614-o1615
Author(s):  
Tong Yu ◽  
Hai-Yan Tian ◽  
Xiao-Feng Yuan ◽  
Shu-Zhi Hu ◽  
Ren-Wang Jiang

The title compound, C24H30O5, is the didehydro product of the steroid hellebrigenin (systematic name: 3β,5,14-trihydroxy-19-oxo-5β-bufa-20,22-dienolide). It consists of three cyclohexane rings (A, B and C), a five-membered ring (D) and a six-membered lactone ring (E). The stereochemistry of the ring junctions are A/B cis, B/C trans and C/D cis. Cyclohexane rings A, B and C have normal chair conformations. The five-membered ring D with the C=C bond adopts an envelope conformation. Lactone ring E is essentially planar with a mean derivation of 0.006 (4) Å and is β-oriented at the C atom of ring D to which it is attached. There is an O—H...O hydrogen bond in the molecule involving the hydroxy groups. In the crystal, O—H...O hydrogen bonds link the molecules into chains propagating along [010]. The chains are linked by C—H...O contacts into a three-dimensional network.


2007 ◽  
Vol 63 (11) ◽  
pp. o4404-o4404 ◽  
Author(s):  
Shu-Ping Yang ◽  
Li-Jun Han ◽  
Da-Qi Wang ◽  
Hai-Tao Xia

In the title compound, C14H12BrNO2, the molecules are linked by one C—H...Br hydrogen bond, so forming a C(13) chain running parallel to the [010] direction, and these chains are linked by further C—H...π and C—H...Br hydrogen bonds, resulting in a three-dimensional network structure.


Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


IUCrData ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Yanwen Sun ◽  
Haolei Wu ◽  
Changheng Wei ◽  
Mei Gao ◽  
Zeyi Shen ◽  
...  

In the title compound, C17H16ClN5O3, the phenyl and the oxadiazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular C—H...Cl contact present. In the crystal, molecules are linked by bifurcated C—(H,H)...O hydrogen bonds and a C—H...N hydrogen bond, forming layers parallel to the ab plane.


Sign in / Sign up

Export Citation Format

Share Document