Effect of hot obstacle position on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure using lattice Boltzmann method

Author(s):  
Yuan Ma ◽  
Rasul Mohebbi ◽  
Mohammad Mehdi Rashidi ◽  
Zhigang Yang

Purpose This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method. Design/methodology/approach The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated. Findings It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel. Originality/value In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.

2019 ◽  
Vol 30 (5) ◽  
pp. 2625-2637 ◽  
Author(s):  
Hanieh Nazarafkan ◽  
Babak Mehmandoust ◽  
Davood Toghraie ◽  
Arash Karimipour

Purpose This study aims to apply the lattice Boltzmann method to investigate the natural convection flows utilizing nanofluids in a semicircular cavity. The fluid in the cavity is a water-based nanofluid containing Al2O3 or Cu nanoparticles. Design/methodology/approach The study has been carried out for the Rayleigh numbers from 104 to 106 and the solid volume fraction from 0 to 0.05. The effective thermal conductivity and viscosity of nanofluid are calculated by the models of Chon and Brinkman, respectively. The effects of solid volume fraction on hydrodynamic and thermal characteristics are investigated and discussed. The averaged and local Nusselt numbers, streamlines, temperature contours for different values of solid volume fraction and Rayleigh number are illustrated. Findings The results indicate that more solid volume fraction corresponds to more averaged Nusselt number for both types of nanofluids. It is also found that the effects of solid volume fraction of Cu are stronger than those of Al2O3. Originality/value Numerical study of natural convection of nanofluid in a semi-circular cavity with lattice Boltzmann method in the presence of water-based nanofluid containing Al2O3 or Cu nanoparticles.


2020 ◽  
Vol 30 (12) ◽  
pp. 5017-5035
Author(s):  
Xiaodong Wang ◽  
David Ross

Purpose Natural convection heat transfer during free convection phenomenon in a cavity included with active fins and pipes is investigated. The influence of the orientation of fins on the heat transfer between heat source (i.e. hot fins) and heat sink (i.e. cold pipes) is investigated by using numerical and experimental techniques. Design/methodology/approach For the numerical simulations, the multiple relaxation time (MRT) thermal lattice Boltzmann method (LBM) is used. In this numerical approach, two separated distribution functions are used to solve the flow and temperature distributions within the computational domain. Furthermore, the local/volumetric second law analysis is used to show the impact of evaluated parameters on the heat transfer irreversibility. In addition, the dynamic viscosity and thermal conductivity of TiO2-water nanofluid are measured by using Brookfield viscometer and KD2 pro conductmeter, respectively. Findings The examined range of Rayleigh number is from 103 to 106, and the nanofluid samples are provided in 0, 20, 40, 60, 80 and 100 ppm. Originality/value The originality of this work is use of dual-MRT thermal LBM and experimental measurements of rheological/thermal properties of nanofluid for investigation of free convection problem for the considered application.


2018 ◽  
Vol 28 (10) ◽  
pp. 2254-2283 ◽  
Author(s):  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Lioua Kolsi

Purpose This paper aims to perform the lattice Boltzmann simulation of natural convection heat transfer in cavities included with active hot and cold walls at the side walls and internal hot and cold obstacles. Design/methodology/approach The cavity is filled with double wall carbon nanotubes (DWCNTs)-water nanofluid. Different approaches such as local and total entropy generation, local and average Nusselt number and heatline visualization are used to analyze the natural convection heat transfer. The cavity is filled with DWCNTs-water nanofluid and the thermal conductivity and dynamic viscosity are measured experimentally at different solid volume fractions of 0.01 per cent, 0.02 per cent, 0.05 per cent, 0.1 per cent, 0.2 per cent and 0.5 per cent and at a temperature range of 300 to 340 (K). Findings Two sets of correlations for these parameters based on temperature and solid volume fraction are developed and used in the numerical simulations. The influences of different governing parameters such as Rayleigh number, solid volume fraction and different arrangements of active walls on the fluid flow, heat transfer and entropy generation are presented, comprehensively. It is found that the different arrangements of active walls have pronounced influence on the flow structure and heat transfer performance. Furthermore, the Nusselt number has direct relationship with Rayleigh number and solid volume fraction. On the other hand, the total entropy generation has direct and reverse relationship with Rayleigh number and solid volume fraction, respectively. Originality/value The originality of this work is to analyze the two-dimensional natural convection using lattice Boltzmann method and different approaches such as entropy generation and heatline visualization.


Sign in / Sign up

Export Citation Format

Share Document