rayleigh number
Recently Published Documents


TOTAL DOCUMENTS

1134
(FIVE YEARS 215)

H-INDEX

74
(FIVE YEARS 5)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Mohammed Alghaseb ◽  
Walid Hassen ◽  
Abdelhakim Mesloub ◽  
Lioua Kolsi

In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.


Author(s):  
Nilankush Acharya

This study investigates the Al2O3-water nanofluidic transport within an isosceles triangular compartment with top vertex downwards. The top wall is maintained isothermally cooled and left as well as right inclined walls are made uniformly heated. Two diamond-shaped obstacles are positioned inside the enclosure. The nanofluidic motion is supposed to be magnetically influenced. This investigation includes a fine analysis of how various thermal modes of obstacles affect the velocity and thermal profiles of the nanofluid. Appropriate similarity conversion leads to having a non-dimensional flow profile and is treated with Galerkin finite element scheme. The grid independency, experimental verification, and comparison assessments are directed to explore the model accuracy. The dynamic parameters like Rayleigh number [Formula: see text], nanoparticle volume fraction [Formula: see text], and Hartmann number [Formula: see text] are varied to perceive the noteworthy changes in isotherms, velocity, streamlines, and Nusselt number. The consequences specify average Nusselt number deteriorates for Hartmann number but escalates for nanoparticle concentration and Rayleigh number. Both heated and adiabatic obstacles exhibit high heat transport, while cold obstacles reveal the lowest magnitude in heat transmission. For Rayleigh number, cold obstacles reveal 34.51% heat transport enhancement, whereas it is 52.72% for heated obstacles compared to cold one. mathematics subject classification: 76W05


2022 ◽  
Vol 961 (1) ◽  
pp. 012032
Author(s):  
Israa H Alkinani ◽  
Luma Fadhil Ali

Abstract The investigation of natural convection in an annular space between two concentric cylinders partially filled with metal foam is introduced numerically. The metal foam is inserted with a new suggested design that includes the distribution of metal foam in the annular space, not only in the redial direction, but also with the angular direction. Temperatures of inner and outer cylinders are maintained at constant value in which inner cylinder temperature is higher than the outer one. Naiver Stokes equation with Boussinesq approximation is used for fluid regime while Brinkman-Forchheimer Darcy model used for metal foam. In addition, the local thermal equilibrium condition in the energy equation of the porous media is presumed to be applicable for the present investigation. CFD ANSYS FLUENT software package (version 18.2) is used as a solver to this problem. Various parameters are examined; Rayleigh number, Darcy number, and thermal conductivity ratio to study the effect of them on fluid flow and heat transfer inside the annuli space in the suggested design of metal foam layer. current model is compared with the available published results and good agreement is noticed. Results showed that as Rayleigh number increases the dominated of convection mode increases and Nusselt increases. Also, Nusselt is larger at the higher Darcy and thermal conductivity ratio. It was found that at Rayleigh of 106 and thermal conductivity ratio of 104 Nusselt reach its higher value which is 6.69 for Darcy of 0.1 and 6.77 for Darcy of 0.001. A comparison between this design and the traditional design was established for Darcy 0.001 and thermal conductivity ratio 102, and its showed a good enhancement in Nusselt number and the greatest enhancement percentage was 44% at Rayleigh equal 5*104 while the lowest percentage is 6% for Rayleigh equal106.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Suman Shekhar ◽  
Ravi Ragoju ◽  
Gudala Janardhana Reddy ◽  
Mikhail A. Sheremet

The effect of rotation and cross-diffusion on convection in a horizontal sparsely packed porous layer in a thermally conducting fluid is studied using linear stability theory. The normal mode method is employed to formulate the eigenvalue problem for the given model. One-term Galerkin weighted residual method solves the eigenvalue problem for free-free boundaries. The eigenvalue problem is solved for rigid-free and rigid-rigid boundaries using the BVP4c routine in MATLAB R2020b. The critical values of the Rayleigh number and corresponding wave number for different prescribed values of other physical parameters are analyzed. It is observed that the Taylor number and Solutal Rayleigh number significantly influence the stability characteristics of the system. In contrast, the Soret parameter, Darcy number, Dufour parameter, and Lewis number destabilize the system. The critical values of wave number for different prescribed values of other physical parameters are also analyzed. It is found that critical wave number does not depend on the Soret parameter, Lewis number, Dufour parameter, and solutal Rayleigh number; hence critical wave number has no impact on the size of convection cells. Further critical wave number acts as an increasing function of Taylor number, so the size of convection cells decreases, and the size of convection cells increases because of Darcy number.


2021 ◽  
Author(s):  
Lanka Sandeep Raj ◽  
Sane Sreenivas ◽  
Bandaru Durga Prasad

Abstract Multiple factors govern the Thermo-hydraulic behaviour of Latent heat storage devices. The correlation among these factors varies from case to case. In this work, a concentric tube in tube latent heat storage system is numerically modelled for the bottom charging case. Fixed grid enthalpy porosity approach is adopted to account for phase change. The numerical model’s independence is achieved by testing mesh size, time step, and maximum iterations per time step. The computational approach is validated against the experimental data. Non-dimensional parameters viz Rayleigh Number (3.04x105 to 65.75 x105), Stefan Number (0.2 to 1), Reynolds Number (600 to 3000), and L/D ratio (2 to 15) are varied in the respective ranges mentioned in parenthesis. Stefan number is found to have a major influence on the Melt Fraction and Melting time, compared to Rayleigh Number and Reynolds Number. Correlations are presented for quantifying the melt fraction and dimensionless melting time.


Author(s):  
Purity Mberia ◽  
Stephen Karanja ◽  
Mark Kimathi

Numerical analysis of fluid flow is anchored on the laws of conservation. A challenge in solving the momentum equation arises due to the unavailability of an explicit pressure equation. To avoid solving the pressure term most researchers have eliminated it by cross differentiating the x and the y two dimensional momentum equations and subtracting them. This method introduces more variables to be solved in comparison to the primitive variables and is  restricted to two-dimensional flows as streamlines do not exist in three-dimension. This method thus presents a serious limitation in analysis of fluid flow. In this study an equation for computing pressure has been developed using pressure - velocity coupling and used in solving the governing equations. The performance of three pressure velocity schemes namely; the Semi Implicit Method for Pressure linked Equation (SIMPLE), SIMPLE Revised (SIMPLER) and SIMPLE Consistent (SIMPLEC) for laminar buoyancy driven flow has been tested in order to establish the scheme that gives results consistent with bench mark data. The equations governing the flow are solved iteratively using finite volume method together with the central difference interpolating scheme. The solutions are presented for Rayleigh numbers of 103, 104, and 105. This resulted in the velocity profiles for the SIMPLE, SIMPLER, and SIMPLEC algorithm for a Rayleigh number of 104 and 105 converging to the same path. At a Rayleigh number of 103 however, SIMPLER algorithm undergoes a degradation in convergence with grid refinement at the baffle region. Results predicted by using the SIMPLEC algorithm are thus able to effectively compute the velocity of fluid flow in a differentially heated square enclosure with baffles for both low and higher Rayleigh numbers irrespective of the grid size.


Author(s):  
Shafiq Mohamad ◽  
Jnana Ranjan Senapati ◽  
Sachindra Kumar Rout ◽  
Sunil Kumar Sarangi

Blast furnaces are large and costly devices, and contribute enormous wealth to world economy. A tiny improvement of furnace performance can translate to huge saving not only in cost of operation but also in air pollution. It presents a numerical solution of the continuity, momentum, and energy equations for a fluid domain surrounding the outer cylindrical surface of a vertical cylinder with the specific longitudinal section using ANSYS FLUENT 18. The main parameters of this study are the dimensionless ratio of cylinder length to the maximum diameter varying between 3.24 and 5.4, the Rayleigh number ranging between 104 and 107, and the cylinder surface temperature ([Formula: see text]) varying between 375 K and 600 K, the ambient temperature being taken as 300 K. These parameters have been varied during the simulation to determine their influence on the free convection characteristics. The study clearly shows that the computed Nusselt number increases with increase of Rayleigh number and surface temperature, the increment being minimal for high values of length to the maximum diameter. It is also observed from the simulation that the rate of heat transfer goes down with increase of length to the maximum diameter. The results present local heat transfer and skin friction coefficients over the outer cylindrical surface of the blast furnace of chosen dimensions. The thermal plume and the velocity vector field around the furnace are displayed. An empirical Nusselt number to Rayleigh number relationship has been proposed for the blast furnace of any size within range of Rayleigh numbers covered in this study. This formula derived is correct within ±5%, and is expected to be very useful to field engineers.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8090
Author(s):  
Kun He ◽  
Lei Wang ◽  
Jiangxu Huang

Phase change material (PCM) has received significant attention due to its great potential for thermal energy storage. However, the major undesirable property of PCM is related to its low thermal conductivity. In this work, the electrohydrodynamic (EHD) enhancement of PCM melting in circular-elliptical annuli is investigated numerically by using the lattice Boltzmann method (LBM). The key motivation for our choice of the elliptical shape is due to the fact that the more curved elliptical surface corresponds to stronger charge injection strength, which may lead to stronger flow field, and the consequent increase of heat transfer rate. The influences of several non-dimensional parameters, including electric Rayleigh number T, thermal Rayleigh number (Ra) and the aspect ratio (AR) of the inner ellipse are investigated in detail. Based on the numerical results, it is found that the radial electro-convective flow induced by the external electric field makes a significant contribution to the enhancement of melting heat transfer, and specially, the maximum time saving in some cases is more than 85%. Moreover, we observe that when the Coulomb force is dominant over the buoyancy force, no matter the inner elliptical tube is oriented horizontally or vertically, the total melting times in these two cases are nearly the same, and the melting performance obtained for the circular electrode is usually better than the other cases. However, when the flow regime is dominated by the buoyancy force, the use of a slender vertical-oriented elliptical electrode instead of the circular one is more efficient.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012166
Author(s):  
V S Berdnikov ◽  
V A Grishkov ◽  
A V Mikhailov ◽  
V O Ryabov

Abstract The evolution of the spatial form of the flow versus the Rayleigh number in layers with two rigid horizontal boundaries and layers with a free surface is experimentally investigated depending on the Rayleigh and Marangoni numbers. The experiments were carried out with layers of ethyl alcohol and water. A thermal imager was used to measure temperature fields on free surfaces of liquids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fares Redouane ◽  
Wasim Jamshed ◽  
S. Suriya Uma Devi ◽  
Belhadj M. Amine ◽  
Rabia Safdar ◽  
...  

AbstractThe current article aims to discuss the natural convection heat transfer of Ag/Al2O3-water hybrid filled in an enclosure subjected to a uniform magnetic field and provided with a rotating cylinder and an inner undulated porous layer. The various thermo-physical parameters are investigated such as Rayleigh number ($$100 \le Ra \le 100000$$ 100 ≤ R a ≤ 100000 ), Hartmann number ($$0 \le Ha \le 100$$ 0 ≤ H a ≤ 100 ), and the nanoparticles concentration ($$0.02 \le \phi \le 0.08$$ 0.02 ≤ ϕ ≤ 0.08 ). Likewise, the rotational speed of the cylinder ($$- 4000 \le \omega \le + 4000$$ - 4000 ≤ ω ≤ + 4000 ), as well as several characteristics related to the porous layer, are examined li its porosity ($$0.2 \le \varepsilon \le 0.8$$ 0.2 ≤ ε ≤ 0.8 ), Darcy number ($$- 100000 \le Da \le - 100$$ - 100000 ≤ D a ≤ - 100 ) which indicates the porous medium permeability and the number of undulations ($$0 \le N \le 4$$ 0 ≤ N ≤ 4 ). The calculations are carried out based on the Galerkin Finite element method (GFEM) to present the streamlines, isotherms, entropy generation, and average Nusselt numbers in details. The main results proved that increment of Rayleigh number and Darcy number enhances heat transfer convection within the enclosure. Whilst, the porosity presents a minimal impact. Also, the rotational speed in a positive direction has a favorable influence on the heat transfer dispersion across the cavity.


Sign in / Sign up

Export Citation Format

Share Document