volume fraction
Recently Published Documents





2022 ◽  
Vol 203 ◽  
pp. 111073
X. Guo ◽  
G.Y. Chai ◽  
G.J. Weng ◽  
L.L. Zhu ◽  
J. Lu

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 167
Rezwana Rahman ◽  
Haiping Zhu ◽  
Aibing Yu

Various simulations have been conducted to understand the macroscopic behavior of particles in the solid-gas flow in rotating drums in the past. In these studies, the no-slip wall boundary condition and fixed restitution coefficient between particles were usually adopted. The paper presents a numerical study of the gas-solid flow in a rotating drum to understand the effect of the specularity coefficient and restitution coefficient on the hydrodynamic behavior of particles in the segregation process. The volume fraction, granular pressure, granular temperature and their relationships are examined in detail. The boundary conditions of the no-slip and specularity coefficient of 1 are compared. In the simulations, two different sizes of particles with the same density are considered and the Eulerian–Eulerian multiphase model and the kinetic theory of granular flow (KTGF) are used. The results reveal that the hydrodynamical behavior of the particles in the rotating drum is affected by the boundary condition and restitution coefficient. In particular, the increase of specularity coefficient can increase the active region depth, angle repose, granular pressure for both small and large particles and granular temperature for large particles. With increasing restitution coefficient, the angle of repose decreases and granular pressure and temperature increase at the same volume fraction for both small and large particles.

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 229
Sijie Mi ◽  
Minquan Xia ◽  
Xinyue Zhang ◽  
Jihong Liu ◽  
Zhaoxia Cai

Pickering high internal phase emulsions (HIPEs) are gel-like concentrated emulsions that have the potential to be an alternative to partially hydrogenated oil (PHO). In this study, egg yolk granules (EYGs), natural complexes of protein and lipid isolated from egg yolk, were used as an emulsifier to prepare Pickering HIPEs. Gel-like HIPEs with an oil phase volume fraction of 85% and with an emulsifier concentration of only 0.5% could be prepared by using EYGs as an emulsifier. The EYGs were able to form stable HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with NaCl ionic strength of 0.3 M. The EYGs, which could stabilize HIPEs, were easily to adsorb and cover the oil-water interface to form emulsion droplets with small particle size. In addition, interacting EYGs in the aqueous phase formed a continuous network structure, and the oil droplets packed closely, exhibiting high elasticity and shear thinning behavior. Furthermore, the formed HIPEs had suitable storage stability with no significant changes in appearance and microstructure after storage for 60 days. This work can transform traditional oils from liquid-like to solid-like by using EYGs to enrich food processing diversity and improve the storage stability of oils while reducing the intake of PHO and providing a healthier diet for consumers.

2022 ◽  
pp. 152808372110709
Ashraf Nawaz Khan ◽  
Vijay Goud ◽  
Ramasamy Alagirusamy ◽  
Puneet Mahajan ◽  
Apurba Das

In the present study, an attempt has been made to coat the non-conductive Ultra-high Molecular Weight Polyethylene (UHMWPE) fibers with Low-Density Polyethylene (LDPE) powder. In order to enable the deposition of electrostatically charged LDPE powder onto the fiber surface, UHMWPE fibers are dipped into a surface modification bath to impart momentary conductivity. Further, Box Behnken’s experimental design is used to optimize the processing parameters for Fiber Volume Fraction (Vf) for this wet electrostatic spray coating process. An experimental multi-parametric equation is acquired through response surface methodology to ascertain the association amid the process parameters such as processing temperature (A), conveying air pressure (B), and gun nozzle angle (C) on the output response of Vf. The process parametric values for A, B, and C are varied from 225°C to 245°C, 0.2 bar to 0.4 bar, and 0° to 120° respectively. The Vf obtained is in the range of 37.02%–56.28% depending on the combination of process parametric values. Powder pick-up increases with an increase in the gun nozzle angle. An increase in conveying air pressure and temperature of the hot air oven leads to an increase in powder deposition. The values predicted from the model are observed to be in close proximity (94.59%) to the experimental results. Gun nozzle angle is the principal parameter affecting the matrix deposition on the fiber surface in comparison to other process parameters.

2022 ◽  
Vol 14 (2) ◽  
pp. 945
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Replacement of natural aggregates (NAs) with recycled concrete aggregates (RCAs) in complex reinforced concrete (RC) structural elements, such as deep beams with openings, supports environmental sustainability in the construction industry. This research investigates the shear response of RC deep beams with openings made with 100% RCAs. It also examines the effectiveness of using steel fibers as a replacement to the minimum conventional steel stirrups in RCA-based deep beams with web openings. A total of seven RC deep beams with a shear span-to-depth ratio (a/h) of 0.8 were constructed and tested. A circular opening with an opening height-to-depth ratio (h0/h) of 0.3 was placed in the middle of each shear span. Test parameters included the type of the coarse aggregate (NAs and RCAs), steel fiber volume fraction (vf = 1, 2, and 3%), and presence of the minimum conventional steel stirrups. The deep beam specimens with web openings made with 100% RCAs exhibited 13 to 18% reductions in the shear capacity relative to those of their counterparts made with NAs. The inclusion of conventional steel stirrups in RC deep beams with openings was less effective in improving the shear response when 100% RCAs was used. The addition of steel fibers remarkably improved the shear response of the tested RCA-based beams. The gain in the shear capacity of the RCA-based beams caused by the inclusion of steel fibers was in the range of 39 to 84%, whereas the use of conventional steel stirrups resulted in 18% strength gain. The use of 1% steel fiber volume fraction in the RCA-based beam with openings without steel stirrups was sufficient to restore 96% of the original shear capacity of the NA-based beam with conventional steel stirrups. The shear capacities obtained from the tests were compared with predictions of published analytical models. The predicted-to-measured shear capacity was in the range of 0.71 to 1.49.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 610
Qiang Zhu ◽  
Linfu Zhang ◽  
Chuanjie Wang ◽  
Gang Chen ◽  
Heyong Qin ◽  

As the key materials of aircraft engines, nickel-based superalloys have excellent comprehensive properties. Mircotensile experiments were carried out based on in situ digital image correlation (DIC) and in situ synchrotron radiation (SR) technique. The effects of the δ phase on the grain orientation, surface roughening, and strain localization were investigated. The results showed that the average kernel average misorientation (KAM) value of the fractured specimens increased significantly compared with that of the heat-treated specimens. The surface roughness decreased with an increasing volume fraction of the δ phase. The strain localization of specimens increased with the increasing ageing time. The size and volume fraction of voids gradually increased with the increase in plastic strain. Some small voids expanded into large voids with a complex morphology during micro-tensile deformation. The needle-like δ phase near the fracture broke into short rods, while the minor spherical δ phase did not break. The rod-like and needle-like δ phases provided channels for the propagation of the microcrack, and the accumulation of the microcrack eventually led to the fracture of specimens.

Sign in / Sign up

Export Citation Format

Share Document