Effect of the initial conditions on a one-dimensional model of small-amplitude wave propagation in shallow water

2020 ◽  
Vol 30 (11) ◽  
pp. 4979-5014
Author(s):  
J.I. Ramos ◽  
Carmen María García López

Purpose The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow waters that accounts for linear and nonlinear drift, diffusive attenuation, viscosity and dispersion, its dependence on the initial conditions, and its linear stability. Design/methodology/approach An implicit, finite difference method valid for both parabolic and second-order hyperbolic equations has been used to solve the equation in a truncated domain for five different initial conditions, a nil initial first-order time derivative and relaxation times linearly proportional to the viscosity coefficient. Findings A fast transition that depends on the coefficient of the linear drift, the diffusive attenuation and the power of the nonlinear drift are found for initial conditions corresponding to the exact solution of the generalized regularized long-wave equation. For initial Gaussian, rectangular and triangular conditions, the wave’s amplitude and speed increase as both the amplitude and the width of these conditions increase and decrease, respectively; wide initial conditions evolve into a narrow leading traveling wave of the pulse type and a train of slower oscillatory secondary ones. For the same initial mass and amplitude, rectangular initial conditions result in larger amplitude and velocity waves of the pulse type than Gaussian and triangular ones. The wave’s kinetic, potential and stretching energies undergo large changes in an initial layer whose thickness is on the order of the diffusive attenuation coefficient. Originality/value A new, one-dimensional equation for the propagation of small-amplitude waves in shallow waters is proposed and studied analytically and numerically. The equation may also be used to study the displacement of porous media subject to seismic effects, the dispersion of sound in tunnels, the attenuation of sound because of viscosity and/or heat and mass diffusion, the dynamics of second-order, viscoelastic fluids, etc., by appropriate choices of the parameters that appear in it.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J.I. Ramos

Purpose The purpose of this paper is to determine both analytically and numerically the existence of smooth, cusped and sharp shock wave solutions to a one-dimensional model of microfluidic droplet ensembles, water flow in unsaturated flows, infiltration, etc., as functions of the powers of the convection and diffusion fluxes and upstream boundary condition; to study numerically the evolution of the wave for two different initial conditions; and to assess the accuracy of several finite difference methods for the solution of the degenerate, nonlinear, advection--diffusion equation that governs the model. Design/methodology/approach The theory of ordinary differential equations and several explicit, finite difference methods that use first- and second-order, accurate upwind, central and compact discretizations for the convection terms are used to determine the analytical solution for steadily propagating waves and the evolution of the wave fronts from hyperbolic tangent and piecewise linear initial conditions to steadily propagating waves, respectively. The amplitude and phase errors of the semi-discrete schemes are determined analytically and the accuracy of the discrete methods is assessed. Findings For non-zero upstream boundary conditions, it has been found both analytically and numerically that the shock wave is smooth and its steepness increases as the power of the diffusion term is increased and as the upstream boundary value is decreased. For zero upstream boundary conditions, smooth, cusped and sharp shock waves may be encountered depending on the powers of the convection and diffusion terms. For a linear diffusion flux, the shock wave is smooth, whereas, for a quadratic diffusion flux, the wave exhibits a cusped front whose left spatial derivative decreases as the power of the convection term is increased. For higher nonlinear diffusion fluxes, a sharp shock wave is observed. The wave speed decreases as the powers of both the convection and the diffusion terms are increased. The evolution of the solution from hyperbolic tangent and piecewise linear initial conditions shows that the wave back adapts rapidly to its final steady value, whereas the wave front takes much longer, especially for piecewise linear initial conditions, but the steady wave profile and speed are independent of the initial conditions. It is also shown that discretization of the nonlinear diffusion flux plays a more important role in the accuracy of first- and second-order upwind discretizations of the convection term than either a conservative or a non-conservative discretization of the latter. Second-order upwind and compact discretizations of the convection terms are shown to exhibit oscillations at the foot of the wave’s front where the solution is nil but its left spatial derivative is largest. The results obtained with a conservative, centered second--order accurate finite difference method are found to be in good agreement with those of the second-order accurate, central-upwind Kurganov--Tadmor method which is a non-oscillatory high-resolution shock-capturing procedure, but differ greatly from those obtained with a non-conservative, centered, second-order accurate scheme, where the gradients are largest. Originality/value A new, one-dimensional model for microfluidic droplet transport, water flow in unsaturated flows, infiltration, etc., that includes high-order convection fluxes and degenerate diffusion, is proposed and studied both analytically and numerically. Its smooth, cusped and sharp shock wave solutions have been determined analytically as functions of the powers of the nonlinear convection and diffusion fluxes and the boundary conditions. These solutions are used to assess the accuracy of several finite difference methods that use different orders of accuracy in space, and different discretizations of the convection and diffusion fluxes, and can be used to assess the accuracy of other numerical procedures for one-dimensional, degenerate, convection--diffusion equations.


2017 ◽  
Vol 83 (3) ◽  
Author(s):  
Stéphane Colombi ◽  
Christophe Alard

We propose a new semi-Lagrangian Vlasov–Poisson solver. It employs metric elements to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $\boldsymbol{Q}(\boldsymbol{P})$ of any test particle $\boldsymbol{P}$, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time $t$ and position $\boldsymbol{P}$ by proper interpolation of initial conditions, following Liouville theorem. When distortion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third-order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four- or six-dimensional phase space. It can also be trivially generalised to plasmas.


2001 ◽  
Vol 6 (2) ◽  
pp. 210-220 ◽  
Author(s):  
V. M. Goloviznin ◽  
T. P. Hynes ◽  
S. A. Karabasov

In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one‐dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two‐time‐layer form, which makes it most simple and robust. Supersonic and subsonic shock‐tube tests are used to compare the new schemes with several well‐known second‐order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second‐order Roe scheme with MUSCL flux splitting.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Subal Ranjan Sahu ◽  
Jugal Mohapatra

Purpose The purpose of this study is to provide a robust numerical method for a two parameter singularly perturbed delay parabolic initial boundary value problem (IBVP). Design/methodology/approach To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. Here, the authors have used Shishkin type meshes for spatial discretization. Findings It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm. Originality/value This paper deals with the numerical study of a two parameter singularly perturbed delay parabolic IBVP. To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. The convergence analysis is carried out. It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm. Numerical experiments illustrate the efficiency of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document