Using FEM to study the frictional instability induced by third-body particles confined in frictional interface

2020 ◽  
Vol 72 (10) ◽  
pp. 1239-1244
Author(s):  
Xiaoyu Yan ◽  
Wei Wang ◽  
Xiaojun Liu ◽  
Jimin Xu ◽  
Lihong Zhu ◽  
...  

Purpose A finite element method (FEM) model of the frictional behavior of two rough surfaces with a group of third-body particles confined by the surface asperities is established. By monitoring the stress distribution, friction force and the displacement of the surfaces, how the frictional instability is induced by these particles is studied. This modeling job aims to explore the relation between the meso-scale behavior and the macro-scale frictional behavior of these particles. Design/methodology/approach By using FEM, a 2D model of two frictional rough surfaces with a group of elastic or elasto-plastic particles confined by surface asperities is established. The Mises stress, macro friction force and displacements of elements are monitored during compressing and shearing steps. Findings The macro friction coefficient is more stable under higher pressure and smaller under higher shearing speed. The dilatancy of the interface is caused by the elevation effect of the particles sheared on the peak of the lower surface, particles collision and third body supporting. The combined effect of particles motion and surface–surface contact will induce high-frequency displacements of surface units in restricted direction. Originality/value Previous studies about third-body tribology are mainly concentrated on the frictional behavior with large number of particles distributed homogeneously across the interface, but this paper focuses on the behavior of third-body particles confined by surface asperities. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0544/

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lixin Hai ◽  
Feng Gao ◽  
Yan Li ◽  
Bo Yang ◽  
Yanyan Zhu

Purpose The nonlinear friction disturbance of the moving joint surface of the feed system can lead to the residual vibration of the system, prolong the stability time of the system and reduce the motion precision and machining precision of the machine tool. This paper aims to concern the vibration between joint surfaces caused by nonlinear friction. Design/methodology/approach The model is established from the micro and macro scale based on the LuGre model. The friction characteristics of the moving joint surface are explored. The friction experiment of GCr15 pin and 45 steel disk is designed and the influence of lubrication condition, speed, acceleration and normal load on friction characteristics are studied. Findings Among the drive speed, damping and stiffness, the negative gradient effect of friction, which is characterized by the difference of static and dynamic friction coefficient Δµ, is the main cause of friction vibration between moving joint surfaces. Sufficient lubrication, a proper increase of speed and acceleration, a reasonable reduction of normal load can reduce the negative gradient effect, which can weaken the vibration caused by the nonlinear friction and improve the friction characteristics of the moving joint surface. Originality/value In the past studies, more attention has been paid to revealing the relationship between the relative speed and friction, while the acceleration is often ignored. The negative gradient effect of friction is improved in this paper by changing the contact conditions. Research findings of this paper effectively improve the friction characteristics of the moving interface and provide the basis for restraining the nonlinear vibration between the moving interfaces. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0476/


Sign in / Sign up

Export Citation Format

Share Document