gradient effect
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Tuba Tekin ◽  
Isabel Blum ◽  
Bjoern Delfs ◽  
Ann-Britt Schönfeld ◽  
Bjoern Poppe ◽  
...  

Abstract Objective This study investigates the perturbation correction factors of air-filled ionization chambers regarding their depth and magnetic field dependence. Focus has been placed on the displacement or gradient correction factor Pgr. Besides, the shift of the effective point of measurement Peff that can be applied to account for the gradient effect has been compared between the cases with and without magnetic field. Approach The perturbation correction factors have been simulated by stepwise modifications of the models of three ionization chambers (Farmer 30013, Semiflex 3D 31021 and PinPoint 3D 31022, all from PTW Freiburg). A 10 cm x 10 cm 6 MV photon beam perpendicular to the chamber’s axis was used. A 1.5 T magnetic field was aligned parallel to the chamber’s axis. The correction factors were determined between 0.4 and 20 cm depth. The shift of Peff from the chamber's reference point Pref, ∆z, was determined by minimizing the variation of the ratio between dose-to-water Dw(zref+∆z) and the dose-to-air Dair(zref) along the depth. Main Results The perturbation correction factors with and without magnetic field are depth dependent in the build-up region but can be considered as constant beyond the depth of dose maximum. Additionally, the correction factors are modified by the magnetic field. Pgr at the reference depth is found to be larger in 1.5 T magnetic field than in the magnetic field free case, where an increase of up to 1% is obserbed for the largest chamber (Farmer 30013). The magnitude of ∆z for all chambers decreases by 40% in a 1.5 T magnetic field with the sign of ∆z remains negative. Significance In reference dosimetry, the change of Pgr in a magnetic field can be corrected by applying the magnetic field correction factor kB Qmsr when the chamber is positioned with its Pref at the depth of measurement. However, due to the depth dependence of the perturbation factors, it is more convenient to apply the ∆z-shift during chamber positioning in relative dosimetry.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1779
Author(s):  
Jinghui Han ◽  
Yulin Dong ◽  
Zhibin Ren ◽  
Yunxia Du ◽  
Chengcong Wang ◽  
...  

Forest landscape multifunctionality (FLM) provides multiple benefits, such as climate regulation, water storage, and biodiversity maintenance. However, the external factors limiting FLM have not been fully identified, although addressing them could contribute to sustainable development. The present study aimed to identify and quantify the role of urbanization as an external factor that affects FLM. To this end, impervious area changes in Liaoyuan, China, were observed from 2000 to 2018, and 10 buffer zones at 500 m intervals were established outside the city. Within each buffer zone, we analyzed changes in forest landscape functions, including habitat maintenance, carbon sequestration, and water yield, as well as changes in the multifunctionality of their composition. The urbanization of Liaoyuan was significant in 2000–2018. The functions of the forest landscape became stronger and more stable as they were located further away from the urban edge. We refer to this pattern as the gradient effect of urbanization. Specifically, urbanization affected the investigated functions at a distance of 1000–2500 m. The FLM showed a more significant gradient effect of urbanization. The impact distance of urbanization on the FLM increased from 3000 m in 2000 to over 5000 m in 2018. This impact distance increased significantly whenever urbanization strengthened significantly (i.e., in 2005–2010 and 2015–2018). These findings are instructive for forest and urban managers working to achieve multiple Sustainable Development Goals.


2021 ◽  
Vol 130 (21) ◽  
pp. 215904
Author(s):  
Enrique Martínez ◽  
Nithin Mathew ◽  
Danny Perez ◽  
Sophie Blondel ◽  
Dwaipayan Dasgupta ◽  
...  

2021 ◽  
Vol 13 (20) ◽  
pp. 11271
Author(s):  
Lingge Zhang ◽  
Ningke Hu

With the advent of large-scale development, extreme imbalance in the ecology of the Heihe River Basin (HRB) has caused a series of ecological problems. In order to explore the spatiotemporal variation of ecosystem services (ESs) and to assess the characteristics of ESs under the terrain gradient effect (TGE), the three key ESs were quantified based on the InVEST model using five series of land-use data obtained from remote sensing images from 2000 to 2020 in this study. The terrain index was used to analyze the influence of terrain on ESs. The results show that most of the ESs were in high numbers in the south and low numbers in the north, as well as high numbers in the middle and upper reaches and low numbers at downstream locations. It was found that high-quality habitats degrade to general-quality habitats, and poor-quality habitats evolve into general-quality habitats. It was also found that the water production volume continues to decline and soil conservation becomes relatively stable with little change. This study illustrates different ESs showing obvious TGE with changes in elevation and slope. These results indicate that the effect of land-use change is remarkable and TGE is highly important to ESs in inland watersheds. This research study can provide a scientific basis for the optimization of regional ecosystem patterns. The results are of great significance in terms of rational planning land use, constructing ecological civilizations, and maintaining the physical conditions of land cover at inland river basins.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 857
Author(s):  
Mengyao Li ◽  
Yong Zhou ◽  
Pengnan Xiao ◽  
Yang Tian ◽  
He Huang ◽  
...  

Regional land use change and ecological security are important fields and have been popular issues in global change research in recent years. Regional habitat quality is also an important embodiment of the service function and health of ecosystems. Taking Shiyan City of Hubei Province as an example, the spatiotemporal differences in habitat quality in Shiyan City were evaluated using the habitat quality module of the InVEST model and GIS spatial analysis method based on DEM and land use data from 2000, 2005, 2010, 2015, and 2020. According to the habitat quality index values, the habitats were divided into four levels indicating habitat quality: I (very bad), II (bad), III (good), and IV (excellent), and the topographic gradient effect of habitat quality was studied using the topographic position index. The results show the following. (1) The habitat quality of Shiyan City showed relatively high and obvious spatial heterogeneity overall and, more specifically, was high in the northwest and southwest, moderate in the center, and low in the northeast. The higher quality habitats (levels III, IV) were mainly distributed in mountain and hill areas and water areas, while those with lower quality habitats (levels I, II) were mainly distributed in agricultural urban areas. (2) From 2000 to 2020, the overall average habitat quality of Shiyan City first increased, then decreased, and then increased again. Additionally, the habitat area increased with an improvement in the level. There was a trend in habitat transformation moving from low to high quality level, showing a spatial pattern of “rising in the southwest and falling in the northeast”. (3) The habitat quality in the water area and woodland area was the highest, followed by grassland, and that of cultivated land was the lowest. From 2000 to 2020, the habitat quality of cultivated land, woodland, and grassland decreased slightly, while the habitat quality of water increased significantly. (4) The higher the level of the topographic position index, the smaller the change range of land use types with time. The terrain gradient effect of habitat quality was significant. With the increase in terrain level, the average habitat quality correspondingly improved, but the increasing range became smaller and smaller. These results are helpful in revealing the spatiotemporal evolution of habitat quality caused by land use changes in Shiyan City and can provide a scientific basis for the optimization of regional ecosystem patterns and land use planning and management, and they are of great significance for planning the rational and sustainable use of land resources and the construction of an ecological civilization.


Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 49-94
Author(s):  
Stylianos Markolefas ◽  
Dimitrios Fafalis

In this study, a dynamic Mindlin–Reissner-type plate is developed based on a simplified version of Mindlin’s form-II first-strain gradient elasticity theory. The governing equations of motion and the corresponding boundary conditions are derived using the general virtual work variational principle. The presented model contains, apart from the two classical Lame constants, one additional microstructure material parameter g for the static case and one micro-inertia parameter h for the dynamic case. The formal reduction of this model to a Kirchhoff-type plate model is also presented. Upon diminishing the microstructure parameters g and h, the classical Mindlin–Reissner and Kirchhoff plate theories are derived. Three points distinguish the present work from other similar published in the literature. First, the plane stress assumption, fundamental for the development of plate theories, is expressed by the vanishing of the z-component of the generalized true traction vector and not merely by the zz-component of the Cauchy stress tensor. Second, micro-inertia terms are included in the expression of the kinetic energy of the model. Finally, the detailed structure of classical and non-classical boundary conditions is presented for both Mindlin–Reissner and Kirchhoff micro-plates. An example of a simply supported rectangular plate is used to illustrate the proposed model and to compare it with results from the literature. The numerical results reveal the significance of the strain gradient effect on the bending and free vibration response of the micro-plate, when the plate thickness is at the micron-scale; in comparison to the classical theories for Mindlin–Reissner and Kirchhoff plates, the deflections, the rotations, and the shear-thickness frequencies are smaller, while the fundamental flexural frequency is higher. It is also observed that the micro-inertia effect should not be ignored in estimating the fundamental frequencies of micro-plates, primarily for thick plates, when plate thickness is at the micron scale (strain gradient effect).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruoqian Lin ◽  
Seong-Min Bak ◽  
Youngho Shin ◽  
Rui Zhang ◽  
Chunyang Wang ◽  
...  

AbstractHigh-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials’ thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient’s stabilization effect remains elusive because it is inseparable from nickel’s valence gradient effect. To isolate nickel’s valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.


2021 ◽  
pp. 002029402110071
Author(s):  
Da Wang ◽  
Benkun Tan ◽  
Xie Wang ◽  
Zhenhao Zhang

The temperature distribution of the bridge and its thermal effect has always been an important issue for researchers. To investigate the temperature distribution and thermal stress in the steel-concrete composite bridge deck, a 1:4 ratio temperature gradient effect experimental study was carried out in this paper. First, a set of experimental equipment for laboratory temperature gradient loading was designed based on the principle of temperature gradient caused by solar radiation, the temperature gradient obtained from the measurements were compared with the specifications and verified by the FE method. Next, the loading of the steel-concrete composite deck at different temperatures was performed. The thermal stress response and change trend of the simply supported and continuously constrained boundary conditions under different temperature loads were analyzed. The experimental results show that the vertical temperature of steel-concrete composite bridge deck is nonlinear, which is consistent with the temperature gradient trend of specifications. The vertical temperature gradient has a great influence on the steel-concrete composite bridge deck under different constraints, and the extreme stress of concrete slab and steel beam is almost linear with the temperature gradient. Finally, some suggestions for steel-concrete composite deck design were provided based on the research results.


Sign in / Sign up

Export Citation Format

Share Document