scholarly journals Hybrid Feature Selection Method Based on Neural Networks and Cross-Validation for Liver Cancer With Microarray

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 78214-78224 ◽  
Author(s):  
Sangman Kim ◽  
Jusung Park

2014 ◽  
Vol 926-930 ◽  
pp. 3100-3104 ◽  
Author(s):  
Xi Wang ◽  
Qiang Li ◽  
Zhi Hong Xie

This article analyzed the defects of SVM-RFE feature selection algorithm, put forward new feature selection method combined SVM-RFE and PCA. Firstly, get the best feature subset through the method of cross validation of k based on SVM-RFE. Then, the PCA decreased the dimension of the feature subset and got the independent feature subset. The independent feature subset was the training and testing subset of SVM. Make experiments on five subsets of UCI, the results indicated that the training and testing time was shortened and the recognition accuracy rate of the SVM was higher.



Author(s):  
A. Shamsoddini ◽  
M. R. Aboodi ◽  
J. Karami

Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.



2012 ◽  
Vol 24 (2) ◽  
pp. 399-412 ◽  
Author(s):  
Mahdi Bejani ◽  
Davood Gharavian ◽  
Nasrollah Moghaddam Charkari


Sign in / Sign up

Export Citation Format

Share Document