scholarly journals Matrix Coding-Based Quantum Image Steganography Algorithm

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 35684-35698 ◽  
Author(s):  
Zhiguo Qu ◽  
Zhenwen Cheng ◽  
Xiaojun Wang
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 50849-50857 ◽  
Author(s):  
Zhiguo Qu ◽  
Zhengyan Li ◽  
Gang Xu ◽  
Shengyao Wu ◽  
Xiaojun Wang

2018 ◽  
Vol 57 (6) ◽  
pp. 1848-1863 ◽  
Author(s):  
Ri-Gui Zhou ◽  
Jia Luo ◽  
XingAo Liu ◽  
Changming Zhu ◽  
Lai Wei ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 291-312
Author(s):  
Hong Xiao ◽  
Panchi Li

Digital steganography is the art and science of hiding information in covert channels, so as to conceal the information and prevent the detection of hidden messages. On the classic computer, the principle and method of digital steganography has been widely and deeply studied, and has been initially extended to the field of quantum computing. Quantum image steganography is a relatively active branch of quantum image processing, and the main strategy currently used is to modify the LSB of the cover image pixels. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel steganography using reflected Gray code for color quantum images, and the embedding capacity of this scheme is up to 6 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 6-bit segments. For 6 bits in each segment, the first 3 bits are embedded into the second LSB of RGB channels of the cover image, and the remaining 3 bits are embedded into the LSB of RGB channels of the cover image using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSBs of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.


Sign in / Sign up

Export Citation Format

Share Document