scholarly journals A Formal System of Axiomatic Set Theory in Coq

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 21510-21523 ◽  
Author(s):  
Tianyu Sun ◽  
Wensheng Yu
1958 ◽  
Vol 23 (3) ◽  
pp. 241-249 ◽  
Author(s):  
P. Lorenzen

A “foundational crisis” occurred already in Greek mathematics, brought about by the Pythagorean discovery of incommensurable quantities. It was Eudoxos who provided new foundations, and since then Greek mathematics has been unshakeable. If one reads modern mathematical textbooks, one is normally told that something very similar occurred in modern mathematics. The calculus invented in the seventeenth century had to go through a crisis caused by the use of divergent series. One is told that by the achievements of the nineteenth century from Cauchy to Cantor this crisis has definitely been overcome. It is well known, but it is nevertheless very often not taken seriously into account, that this is an illusion. The so-called ε-δ-definitions of the limit concepts are an admirable achievement, but they are only one step towards the goal of a final foundation of analysis. The nineteenth century solution of the problem of foundations consists of recognizing, in addition to the concept of natural number as the basis of arithmetic, another basic concept for analysis, namely the concept of set. By the inventors of set theory it was strongly held that these sets are self-evident to our intuition; but very soon the belief in their self-evidence was destroyed by the set-theoretic paradoxes. After that, about 1908, the period of axiomatic set theory began. In analogy to geometry there was put forward an uninterpreted system of axioms, a formal system. This, of course, is quite possible. A formal system contains strings of marks; and a special class of these strings, the class of the so-called “theorems”, is inductively defined.


1942 ◽  
Vol 7 (2) ◽  
pp. 65-89 ◽  
Author(s):  
Paul Bernays

The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame. Just as for number theory we need not introduce a set of all finite ordinals but only a class of all finite ordinals, all sets which occur being finite, so likewise for analysis we need not have a set of all real numbers but only a class of them, and the sets with which we have to deal are either finite or enumerable.We begin with the definitions of infinity and enumerability and with some consideration of these concepts on the basis of the axioms I—III, IV, V a, V b, which, as we shall see later, are sufficient for general set theory. Let us recall that the axioms I—III and V a suffice for establishing number theory, in particular for the iteration theorem, and for the theorems on finiteness.


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


Sign in / Sign up

Export Citation Format

Share Document