full generality
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 5)

Author(s):  
Johannes Anschütz

Abstract We prove that torsors under parahoric group schemes on the punctured spectrum of Fontaine’s ring A inf {A_{\mathrm{inf}}} , extend to the whole spectrum. Using descent we can extend a similar result for the ring 𝔖 {\mathfrak{S}} of Kisin and Pappas to full generality. Moreover, we treat similarly the case of equal characteristic. As applications we extend results of Ivanov on exactness of the loop functor and present the construction of a canonical specialization map from the B dR + {B^{+}_{\mathrm{dR}}} -affine Grassmannian to the Witt vector affine flag variety.


Author(s):  
Peter Hintz

AbstractWe prove Price’s law with an explicit leading order term for solutions $$\phi (t,x)$$ ϕ ( t , x ) of the scalar wave equation on a class of stationary asymptotically flat $$(3+1)$$ ( 3 + 1 ) -dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics in the full forward causal cone imply in particular that $$\phi (t,x)=c t^{-3}+{\mathcal {O}}(t^{-4+})$$ ϕ ( t , x ) = c t - 3 + O ( t - 4 + ) for bounded |x|, where $$c\in {\mathbb {C}}$$ c ∈ C is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk–Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $$t^{-2 l-3}$$ t - 2 l - 3 decay for waves with angular frequency at least l, and $$t^{-2 l-4}$$ t - 2 l - 4 decay for waves which are in addition initially static. This definitively settles Price’s law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3079
Author(s):  
Mattia G. Bergomi ◽  
Massimo Ferri ◽  
Pietro Vertechi ◽  
Lorenzo Zuffi

Persistent homology enables fast and computable comparison of topological objects. We give some instances of a recent extension of the theory of persistence, guaranteeing robustness and computability for relevant data types, like simple graphs and digraphs. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness—clique communities, k-vertex, and k-edge connectedness—directly on simple graphs and strong connectedness in digraphs.


Stats ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 971-1011
Author(s):  
Moritz Herrmann ◽  
Fabian Scheipl

We consider functional outlier detection from a geometric perspective, specifically: for functional datasets drawn from a functional manifold, which is defined by the data’s modes of variation in shape, translation, and phase. Based on this manifold, we developed a conceptualization of functional outlier detection that is more widely applicable and realistic than previously proposed taxonomies. Our theoretical and experimental analyses demonstrated several important advantages of this perspective: it considerably improves theoretical understanding and allows describing and analyzing complex functional outlier scenarios consistently and in full generality, by differentiating between structurally anomalous outlier data that are off-manifold and distributionally outlying data that are on-manifold, but at its margins. This improves the practical feasibility of functional outlier detection: we show that simple manifold-learning methods can be used to reliably infer and visualize the geometric structure of functional datasets. We also show that standard outlier-detection methods requiring tabular data inputs can be applied to functional data very successfully by simply using their vector-valued representations learned from manifold learning methods as the input features. Our experiments on synthetic and real datasets demonstrated that this approach leads to outlier detection performances at least on par with existing functional-data-specific methods in a large variety of settings, without the highly specialized, complex methodology and narrow domain of application these methods often entail.


2021 ◽  
Vol 3 (2) ◽  
pp. 181-214
Author(s):  
Robert Frank ◽  
Tim Hunter

Abstract Aravind Joshi famously hypothesized that natural language syntax was characterized (in part) by mildly context-sensitive generative power. Subsequent work in mathematical linguistics over the past three decades has revealed surprising convergences among a wide variety of grammatical formalisms, all of which can be said to be mildly context-sensitive. But this convergence is not absolute. Not all mildly context-sensitive formalisms can generate exactly the same stringsets (i.e. they are not all weakly equivalent), and even when two formalisms can both generate a certain stringset, there might be differences in the structural descriptions they use to do so. It has generally been difficult to find cases where such differences in structural descriptions can be pinpointed in a way that allows linguistic considerations to be brought to bear on choices between formalisms, but in this paper we present one such case. The empirical pattern of interest involves wh-movement dependencies in languages that do not enforce the wh-island constraint. This pattern draws attention to two related dimensions of variation among formalisms: whether structures grow monotonically from one end to another, and whether structure-building operations are conditioned by only a finite amount of derivational state. From this perspective, we show that one class of formalisms generates the crucial empirical pattern using structures that align with mainstream syntactic analysis, and another class can only generate that same string pattern in a linguistically unnatural way. This is particularly interesting given that (i) the structurally-inadequate formalisms are strictly more powerful than the structurally-adequate ones from the perspective of weak generative capacity, and (ii) the formalism based on derivational operations that appear on the surface to align most closely with the mechanisms adopted in contemporary work in syntactic theory (merge and move) are the formalisms that fail to align with the analyses proposed in that work when the phenomenon is considered in full generality.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 418
Author(s):  
Alexander Marcus Simpson

A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular black hole with asymptotically Minkowski core’, followed by an approximation of the permitted quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for spin zero and spin one perturbations of the candidate spacetime. Subsequently, numerical results analysing the respective fundamental modes are compiled for various values of the a parameter (which quantifies the distortion from Schwarzschild spacetime), and for various multipole numbers ℓ. Both electromagnetic spin one fluctuations and scalar spin zero fluctuations on the background spacetime are found to possess shorter-lived, higher-energy signals than their Schwarzschild counterparts for a specific range of interesting values of the a parameter. Comparison between these results and some analogous results for both the Bardeen and Hayward regular black holes is considered. Analysis as to what happens when one permits perturbations of the Regge–Wheeler potential itself is then conducted, first in full generality, before specialising to Schwarzschild spacetime. A general result is presented explicating the shift in quasi-normal modes under perturbation of the Regge–Wheeler potential.


2021 ◽  
Vol 2021 (11) ◽  
pp. 032
Author(s):  
Giulia Capurri ◽  
Andrea Lapi ◽  
Carlo Baccigalupi ◽  
Lumen Boco ◽  
Giulio Scelfo ◽  
...  

Abstract We investigate the isotropic and anisotropic components of the Stochastic Gravitational Wave Background (SGWB) originated from unresolved merging compact binaries in galaxies. We base our analysis on an empirical approach to galactic astrophysics that allows to follow the evolution of individual systems. We then characterize the energy density of the SGWB as a tracer of the total matter density, in order to compute the angular power spectrum of anisotropies with the Cosmic Linear Anisotropy Solving System (CLASS) public code in full generality. We obtain predictions for the isotropic energy density and for the angular power spectrum of the SGWB anisotropies, and study the prospect for their observations with advanced Laser Interferometer Gravitational-Wave and Virgo Observatories and with the Einstein Telescope. We identify the contributions coming from different type of sources (binary black holes, binary neutron stars and black hole-neutron star) and from different redshifts. We examine in detail the spectral shape of the energy density for all types of sources, comparing the results for the two detectors. We find that the power spectrum of the SGWB anisotropies behaves like a power law on large angular scales and drops at small scales: we explain this behavior in terms of the redshift distribution of sources that contribute most to the signal, and of the sensitivities of the two detectors. Finally, we simulate a high resolution full sky map of the SGWB starting from the power spectra obtained with CLASS and including Poisson statistics and clustering properties.


Author(s):  
Jarkko Kari ◽  
Etienne Moutot

AbstractIn this paper we study colorings (or tilings) of the two-dimensional grid ${\mathbb {Z}}^{2}$ ℤ 2 . A coloring is said to be valid with respect to a set P of n × m rectangular patterns if all n × m sub-patterns of the coloring are in P. A coloring c is said to be of low complexity with respect to a rectangle if there exist $m,n\in \mathbb {N}$ m , n ∈ ℕ and a set P of n × m rectangular patterns such that c is valid with respect to P and |P|≤ nm. Open since it was stated in 1997, Nivat’s conjecture states that such a coloring is necessarily periodic. If Nivat’s conjecture is true, all valid colorings with respect to P such that |P|≤ mn must be periodic. We prove that there exists at least one periodic coloring among the valid ones. We use this result to investigate the tiling problem, also known as the domino problem, which is well known to be undecidable in its full generality. However, we show that it is decidable in the low-complexity setting. Then, we use our result to show that Nivat’s conjecture holds for uniformly recurrent configurations. These results also extend to other convex shapes in place of the rectangle. After that, we prove that the nm bound is multiplicatively optimal for the decidability of the domino problem, as for all ε > 0 it is undecidable to determine if there exists a valid coloring for a given $m,n\in \mathbb {N}$ m , n ∈ ℕ and set of rectangular patterns P of size n × m such that |P|≤ (1 + ε)nm. We prove a slightly better bound in the case where m = n, as well as constructing aperiodic SFTs of pretty low complexity. This paper is an extended version of a paper published in STACS 2020 (Kari and Moutot 12).


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Johannes Albrecht ◽  
Emmanuel Stamou ◽  
Robert Ziegler ◽  
Roman Zwicky

Abstract We discuss how LHC di-muon data collected to study Bq → μμ can be used to constrain light particles with flavour-violating couplings to b-quarks. Focussing on the case of a flavoured QCD axion, a, we compute the decay rates for Bq → μμa and the SM background process Bq → μμγ near the kinematic endpoint. These rates depend on non-perturbative Bq → γ(*) form factors with on- or off-shell photons. The off-shell form factors — relevant for generic searches for beyond-the-SM particles — are discussed in full generality and computed with QCD sum rules for the first time. This includes an extension to the low-lying resonance region using a multiple subtracted dispersion relation. With these results, we analyse available LHCb data to obtain the sensitivity on Bq → μμa at present and future runs. We find that the full LHCb dataset alone will allow to probe axion-coupling scales of the order of 106 GeV for both b → d and b → s transitions. As a spin-off application of the off-shell form factors we further analyse the case of light, Beyond the Standard Model, vectors.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 518
Author(s):  
J. C. Pearl ◽  
E. G. Cavalcanti

In a recent work, it was shown by one of us (EGC) that Bell-Kochen-Specker inequality violations in phenomena satisfying the no-disturbance condition (a generalisation of the no-signalling condition) cannot in general be explained with a faithful classical causal model---that is, a classical causal model that satisfies the assumption of no fine-tuning. The proof of that claim however was restricted to Bell scenarios involving 2 parties or Kochen-Specker-contextuality scenarios involving 2 measurements per context. Here we show that the result holds in the general case of arbitrary numbers of parties or measurements per context; it is not an artefact of the simplest scenarios. This result unifies, in full generality, Bell nonlocality and Kochen-Specker contextuality as violations of a fundamental principle of classical causality. We identify, however, an implicit assumption in the former proof, making it explicit here: that certain operational symmetries of the phenomenon are reflected in the model, rather than requiring fine-tuned choices of model parameters. This clarifies a subtle but important distinction between Bell nonlocality and Kochen-Specker contextuality.


Sign in / Sign up

Export Citation Format

Share Document