scholarly journals Flexible Robust Risk-Constrained Unit Commitment of Power System Incorporating Large Scale Wind Generation and Energy Storage

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 209232-209241
Author(s):  
Gaohang Zhang ◽  
Fengting Li ◽  
Chao Xie
2016 ◽  
Vol 136 (5) ◽  
pp. 484-496 ◽  
Author(s):  
Yusuke Udagawa ◽  
Kazuhiko Ogimoto ◽  
Takashi Oozeki ◽  
Hideaki Ohtake ◽  
Takashi Ikegami ◽  
...  

Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 38 ◽  
Author(s):  
Bouzounierakis ◽  
Katsigiannis ◽  
Fiorentzis ◽  
Karapidakis

Greece has a large number of islands that are isolated from the main interconnected Greek power system; however, a majority of them are to be interconnected in the mainland grid over the next decade. A large number of these islands present a significant amount of wind and solar potential. The nature of load demand and renewable production is stochastic; thus, the operation of such isolated power systems can be improved significantly by the installation of a large-scale energy storage system. The role of storage is to compensate for the long and short-term imbalances between power generation and load demand. Pumped hydro storage (PHS) systems represent one of the most mature technologies for large-scale energy storage. However, their advantages have not been proven in practice for cases of medium and small-sized isolated insular systems. Regarding Greece, which contains a large number of isolated insular systems, a PHS system in the island of Ikaria started its test operation in 2019, whereas in Europe only one PHS system operates in El Hierro (Canary Islands). This paper studies the effect of installing a wind-PHS hybrid power station in the operation of the insular power system of Samos, Greece, according to the latest regulatory framework. The implemented analysis uses real hourly data for a whole year, and examines the effects of such an installation considering investors’ and power system operators’ viewpoints. More specifically, the economic viability of this project under different billing scenarios is compared, and its impact on the insular power system operation for various PHS sizes is examined.


2020 ◽  
Vol 10 (17) ◽  
pp. 5964 ◽  
Author(s):  
Tej Krishna Shrestha ◽  
Rajesh Karki

Renewable energy resources like wind generation are being rapidly integrated into modern power systems. Energy storage systems (ESS) are being viewed as a game-changer for renewable integration due to their ability to absorb the variability and uncertainty arising from the wind generation. While abundant literature is available on system adequacy and operational reliability evaluation, operational adequacy studies considering wind and energy storage have received very little attention, despite their elevated significance. This work presents a novel framework that integrates wind power and energy storage models to a bulk power system model to sequentially evaluate the operational adequacy in the operational mission time. The analytical models are developed using a dynamic system state probability evaluation approach by incorporating a system state probability estimation technique, wind power probability distribution, state enumeration, state transition matrix, and time series analysis in order to quantify the operational adequacy of a bulk power system integrated with wind power and ESS. The loss of load probability (LOLP) is used as the operational adequacy index to quantify the spatio-temporal variation in risk resulting from the generation and load variations, their distribution on the network structure, and the operational strategies of the integrated ESS. The proposed framework is aimed to serve as a guideline for operational planning, thereby simplifying the decision-making process for system operators while considering resources like wind and energy storage facilities. The methodology is applied to a test system to quantify the reliability and economic benefits accrued from different operational strategies of energy storage in response to wind generation and other operational objectives in different system scenarios.


Energy Policy ◽  
2010 ◽  
Vol 38 (11) ◽  
pp. 7200-7208 ◽  
Author(s):  
Batsaikhan Nyamdash ◽  
Eleanor Denny ◽  
Mark O’Malley

Sign in / Sign up

Export Citation Format

Share Document