On the complexity function of leading digits of powers of one-digit primes

Author(s):  
Mehdi Golafshan ◽  
Alexei Kanel-Belov ◽  
Alex Heinis ◽  
Georgy Potapov
Keyword(s):  
2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1293
Author(s):  
Sharwin Rezagholi

We analyze symbolic dynamics to infinite alphabets by endowing the alphabet with the cofinite topology. The topological entropy is shown to be equal to the supremum of the growth rate of the complexity function with respect to finite subalphabets. For the case of topological Markov chains induced by countably infinite graphs, our approach yields the same entropy as the approach of Gurevich We give formulae for the entropy of countable topological Markov chains in terms of the spectral radius in l2.


2015 ◽  
Vol 2015 ◽  
pp. 1-15
Author(s):  
Andrei-Horia Mogoş ◽  
Bianca Mogoş ◽  
Adina Magda Florea

Algorithms represent one of the fundamental issues in computer science, while asymptotic notations are widely accepted as the main tool for estimating the complexity of algorithms. Over the years a certain number of asymptotic notations have been proposed. Each of these notations is based on the comparison of various complexity functions with a given complexity function. In this paper, we define a new asymptotic notation, called “Weak Theta,” that uses the comparison of various complexity functions with two given complexity functions. Weak Theta notation is especially useful in characterizing complexity functions whose behaviour is hard to be approximated using a single complexity function. In addition, in order to highlight the main particularities of Weak Theta, we propose and prove several theoretical results: properties of Weak Theta, criteria for comparing two complexity functions, and properties of a new set of complexity functions (also defined in the paper) based on Weak Theta. Furthermore, to illustrate the usefulness of our notation, we discuss an application of Weak Theta in artificial intelligence.


2015 ◽  
Vol 3 ◽  
Author(s):  
VAN CYR ◽  
BRYNA KRA

For a finite alphabet ${\mathcal{A}}$ and shift $X\subseteq {\mathcal{A}}^{\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group $\text{Aut}(X)$. For such systems, we show that every finitely generated subgroup of $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then $\text{Aut}(X)$ is virtually $\mathbb{Z}$; if $X$ has dense aperiodic points, then $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$. We also classify all finite groups that arise as the automorphism group of a shift.


1995 ◽  
Vol 18 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Richard H. Lindley ◽  
Steven M. Wilson ◽  
William Ray Smith ◽  
Kay Bathurst

2011 ◽  
Vol 381 ◽  
pp. 109-113
Author(s):  
Xing Wang ◽  
Ling Xu

Transmission line intelligent distribution and management system is the latest systematic product for optical network intelligent distribution, with the function of detecting, warning and information processing, whose purpose is to realize the delicacy management of transmission line resources and solve the problems appearing in the process of using resource management system., such as input complexity, function singleness and so on. The thesis introduces different functions of each module in this system, puts forward the solutions to this systematic function and provides some realization codes.


Sign in / Sign up

Export Citation Format

Share Document