infinite graphs
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 53)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Takeshi Tsukada ◽  
Hiroshi Unno

This paper shows that a variety of software model-checking algorithms can be seen as proof-search strategies for a non-standard proof system, known as a cyclic proof system . Our use of the cyclic proof system as a logical foundation of software model checking enables us to compare different algorithms, to reconstruct well-known algorithms from a few simple principles, and to obtain soundness proofs of algorithms for free. Among others, we show the significance of a heuristics based on a notion that we call maximal conservativity ; this explains the cores of important algorithms such as property-directed reachability (PDR) and reveals a surprising connection to an efficient solver of games over infinite graphs that was not regarded as a kind of PDR.


2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>


2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hanan Alolaiyan ◽  
Abdul Razaq ◽  
Awais Yousaf ◽  
Rida Zahra

This work deals with the well-known group-theoretic graphs called coset graphs for the modular group G and its applications. The group action of G on real quadratic fields forms infinite coset graphs. These graphs are made up of closed paths. When M acts on the finite field Zp, the coset graph appears through the contraction of the vertices of these infinite graphs. Thus, finite coset graphs are composed of homomorphic copies of closed paths in infinite coset graphs. In this work, we have presented a comprehensive overview of the formation of homomorphic copies.


Author(s):  
CHRISTIAN ELBRACHT ◽  
JAKOB KNEIP ◽  
MAXIMILIAN TEEGEN

Abstract We present infinite analogues of our splinter lemma for constructing nested sets of separations. From these we derive several tree-of-tangles-type theorems for infinite graphs and infinite abstract separation systems.


2021 ◽  
Vol 149 ◽  
pp. 16-22
Author(s):  
Joshua Erde ◽  
J. Pascal Gollin ◽  
Atilla Joó ◽  
Paul Knappe ◽  
Max Pitz

2021 ◽  
Vol 22 (3) ◽  
pp. 1-51
Author(s):  
Christopher H. Broadbent ◽  
Arnaud Carayol ◽  
Matthew Hague ◽  
Andrzej S. Murawski ◽  
C.-H. Luke Ong ◽  
...  

This article studies a large class of two-player perfect-information turn-based parity games on infinite graphs, namely, those generated by collapsible pushdown automata. The main motivation for studying these games comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both models being equi-expressive for generating infinite trees. Our main result is to establish the decidability of such games and to provide an effective representation of the winning region as well as of a winning strategy. Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees generated by collapsible pushdown automata/recursion schemes.


2021 ◽  
Author(s):  
Ali Haidar

Cops and Robbers is a vertex pursuit game played on graphs. The objective of the game, as the name suggests, is for a set of cops to catch the robber. We study a new variant of this game in which the robber can attack a cop or fight back. This variation restricts the movement of the cops and changes many of the parameters and strategies achieved in the regular game. We explore aspects of this variant such as classifications for certain cop numbers, upper and lower bounds, strategies on special graphs, the cop number on products of graphs, complexity of computations, and density of cops in infinite graphs.


2021 ◽  
Author(s):  
Ali Haidar

Cops and Robbers is a vertex pursuit game played on graphs. The objective of the game, as the name suggests, is for a set of cops to catch the robber. We study a new variant of this game in which the robber can attack a cop or fight back. This variation restricts the movement of the cops and changes many of the parameters and strategies achieved in the regular game. We explore aspects of this variant such as classifications for certain cop numbers, upper and lower bounds, strategies on special graphs, the cop number on products of graphs, complexity of computations, and density of cops in infinite graphs.


Sign in / Sign up

Export Citation Format

Share Document