Applying Particle Swarm Optimization to Quality-of-Service-Driven Web Service Composition

Author(s):  
Simone A. Ludwig
2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2021 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
Laishram Jenny Chanu ◽  
◽  
Arnab Paul ◽  

Lots of Web Services are available which differ in their QoS values but can perform a similar task. Discovery mechanism selects the best Web Service according to their QoS values and functional attributes. Cases arise, where the discovery mechanism fails, as a user’s complex query cannot be satisfied by a single Web Service. This can be solved by Web Service composition where multiple Web Services are combined to give a composite Web Service which meet user’s complex query. Our work is mainly focused on composition of Web Services that efficiently meets the user’s query. Different algorithms have been discussed and used by different researchers in this field. One of the most blooming topics is the use of evolutionary algorithms in optimization problems. In our work, we have chosen Particle Swarm Optimization Algorithm approach to discover the best efficient composition. Then, Weight Improved Particle Swarm Optimization Algorithm is used to improve the results which were found to be quite satisfying and efficient.


2018 ◽  
Vol 14 (2) ◽  
pp. 155014771876158 ◽  
Author(s):  
Honghao Gao ◽  
Kang Zhang ◽  
Jianhua Yang ◽  
Fangguo Wu ◽  
Hongsheng Liu

Hybrid services use different protocols on various networks, such as WIFI networks, Bluetooth networks, 5G communications systems, and wireless sensor networks. Hybrid service compositions can be varied, representing an effective method of integrating into wireless scenarios context-aware applications that can sense mobility via changes in user location and combining services to support target functions. In this article, improved particle swarm optimization is introduced into the quality service evaluation of dynamic service composition to meet the mobility requirements of hybrid networks. First, this work classifies hybrid services into different task groups to generate candidate sets and then interface matching is used to compare the operations of candidate services with user requirements to select the appropriate services. Second, the service composition is determined by the particle swarm optimization simulation process, which aims to identify an optimal plan based on the calculated value from quality of service. Third, considering a change of service repository, when the quality of a composite service is lower than a predefined threshold, the local greedy algorithm and global reconfiguration method are adopted to dynamically restructure composite services. Finally, a set of experiments is conducted to demonstrate the effectiveness of the proposed method for determining the dynamic service composition, particularly when the scale of hybrid services is large. The method provides a technical reference for engineering practice that will fulfill mobile computing needs.


Sign in / Sign up

Export Citation Format

Share Document