engineering practice
Recently Published Documents


TOTAL DOCUMENTS

3096
(FIVE YEARS 916)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-24
Author(s):  
D. Reid ◽  
R. Fanni ◽  
A. Fourie

The cross-anisotropic nature of soil strength has been studied and documented for decades, including the increased propensity for cross-anisotropy in layered materials. However, current engineering practice for tailings storage facilities (TSFs) does not appear to generally include cross-anisotropy considerations in the development of shear strengths. This being despite the very common layering profile seen in subaerially-deposited tailings. To provide additional data to highlight the strength cross-anisotropy of tailings, high quality block samples from three TSFs were obtained and trimmed to enable Hollow Cylinder Torsional Shear tests to be sheared at principal stress angles of 0 and 45 degrees during undrained shearing. Consolidation procedures were carried out such that the drained rotation of principal stress angle that would precede potential undrained shear events for below-slope tailings was reasonably simulated. The results indicated the significant effects of cross-anisotropy on the undrained strength, instability stress ratio, contractive tendency and brittleness of each of the three tailings types. The magnitude of cross-anisotropy effects seen was generally consistent with previous published data on sands.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chunxiao Zhang ◽  
Xinwang Li ◽  
Xiaona Liu ◽  
Qiang Li ◽  
Yizhou Bai

PurposeThe purpose of this paper is to focus on an optimizing maintenance policy with repair limit time for a new type of aircraft component, in which the lifetime is assumed to be an uncertain variable due to no historical operation data, and the repair time is a random variable that can be described by the experimental data.Design/methodology/approachTo describe this repair limit time policy over an infinite time horizon, an extended uncertain random renewal reward theorem is firstly proposed based on chance theory, involves uncertain random interarrival times and stochastic rewards. Accordingly, the uncertain random programming model, which minimized the expected maintenance cost rate, is formulated to find the optimal repair limit time.FindingsA numerical example with sensitivity analysis is provided to illustrate the utility of the proposed policy. It provides a useful reference and guidance for aircraft optimization. For maintainers, it plays an important guiding role in engineering practice.Originality/valueThe proposed uncertain random renewal reward process proved useful for the optimization of maintenance strategy with maintenance limited time for a new type of aircraft components, which provides scientific support for aircraft maintenance decision-making for civil aviation enterprises.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 270
Author(s):  
Chenyang Hu ◽  
Yuelin Gao ◽  
Fuping Tian ◽  
Suxia Ma

Quadratically constrained quadratic programs (QCQP), which often appear in engineering practice and management science, and other fields, are investigated in this paper. By introducing appropriate auxiliary variables, QCQP can be transformed into its equivalent problem (EP) with non-linear equality constraints. After these equality constraints are relaxed, a series of linear relaxation subproblems with auxiliary variables and bound constraints are generated, which can determine the effective lower bound of the global optimal value of QCQP. To enhance the compactness of sub-rectangles and improve the ability to remove sub-rectangles, two rectangle-reduction strategies are employed. Besides, two ϵ-subproblem deletion rules are introduced to improve the convergence speed of the algorithm. Therefore, a relaxation and bound algorithm based on auxiliary variables are proposed to solve QCQP. Numerical experiments show that this algorithm is effective and feasible.


Author(s):  
Kamale G ◽  
Satheeshkumar K R P

Soil-structure interaction(SSI) analysis is the study of the dynamic response of a structure as influenced by the interaction with the surrounding soil. The SSI response is sensitive to the characteristics of the soil, structures, and ground motion, as well as the depth of embedment. The concept of soil-structure interaction was introduced , and the research methods were discussed. This report presents a synthetic of the body of knowledge contained in SSI literature, which has been distilled into a concise narrative and harmonized under a consistent set of variables and units. Specific techniques are described by which SSI phenomena can be simulated in engineering practice, and recommendations for modeling seismic soil-structure interaction effects on building structures are provided. An attempt was made to summarize the all terms in this area of study.


Author(s):  
Cruz Y. Li ◽  
Zengshun Chen ◽  
Tim K. T. Tse ◽  
Asiri U. Weerasuriya ◽  
Xuelin Zhang ◽  
...  

AbstractScientific research and engineering practice often require the modeling and decomposition of nonlinear systems. The dynamic mode decomposition (DMD) is a novel Koopman-based technique that effectively dissects high-dimensional nonlinear systems into periodically distinct constituents on reduced-order subspaces. As a novel mathematical hatchling, the DMD bears vast potentials yet an equal degree of unknown. This effort investigates the nuances of DMD sampling with an engineering-oriented emphasis. It aimed at elucidating how sampling range and resolution affect the convergence of DMD modes. We employed the most classical nonlinear system in fluid mechanics as the test subject—the turbulent free-shear flow over a prism—for optimal pertinency. We numerically simulated the flow by the dynamic-stress Large-Eddies Simulation with Near-Wall Resolution. With the large-quantity, high-fidelity data, we parametrized and identified four global convergence states: Initialization, Transition, Stabilization, and Divergence with increasing sampling range. Results showed that Stabilization is the optimal state for modal convergence, in which DMD output becomes independent of the sampling range. The Initialization state also yields sufficient accuracy for most system reconstruction tasks. Moreover, defying popular beliefs, over-sampling causes algorithmic instability: as the temporal dimension, n, approaches and transcends the spatial dimension, m (i.e., m < n), the output diverges and becomes meaningless. Additionally, the convergence of the sampling resolution depends on the mode-specific dynamics, such that the resolution of 15 frames per cycle for target activities is suggested for most engineering implementations. Finally, a bi-parametric study revealed that the convergence of the sampling range and resolution are mutually independent.


2022 ◽  
Author(s):  
Xinyuan Zhao ◽  
Xinwang Li ◽  
Ke Yang ◽  
Lichao Cheng ◽  
Yiling Qin

Abstract The material ratio of the roadside backfill body in gob-side entry retaining determines its mechanical properties, which plays an important role in the supporting effect of the roadway surrounding rock. In this paper, a similar material modeling is used to verify the spatiotemporal law of the ground pressure in the engineering case of dense solid backfilling mining in Xingtai Mine, China. Based on that law, the theoretical requirements for the bearing performance of the roadside backfill body are proposed. Finally, a material ratio that meets the theoretical requirements is obtained by compression test, and the deformation and failure characteristics of the backfill body with this ratio are analyzed. The results show that the maximum pressure of the backfill body measured in Xingtai Mine is 5.5 MPa, which is about 40 m away from the coal face, after 40m, the pressure of the backfill body will not increase anymore. The similar simulation test also proved that the ground pressure behind the coal face increases gradually and tends to be stable during the backfilling process, which shows certain spatiotemporal characteristics. Through the proportioning experiment, it is determined that the optimal material ratio of the roadside backfill body is gangue: fly ash: cement = 10:3:1, which meets the theoretical requirement that the strength of the roadside backfill body at any position is not less than the ground pressure at that position. The research results provide a reference for the engineering practice of gob-side entry retaining in dense backfilling mining.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Chaojun Fan ◽  
Haiou Wen ◽  
Sheng Li ◽  
Gang Bai ◽  
Lijun Zhou

Owing to the exhaustion of shallow coal resources, deep mining has been occupied in coal mines. Deep buried coal seams are featured by the great ground stress, high gas pressure, and low permeability, which boost the risk of gas disasters and thus dramatically threaten the security about coal mines. Coal seam gas pressure and gas content can be decreased by gas extraction, which is the primary measure to prevent and control mine gas disasters. The coal mass is simplified into a continuous medium with dual structure of pores and fractures and single permeability. In consideration of the combined effects of gas slippage and two-phase flow, a hydraulic-mechanical coupling model for gas migration in coals is proposed. This model involves the equations of gas sorption and diffusion, gas and water seepage, coal deformation, and evolution of porosity and permeability. Based on these, the procedure of gas extraction through the floor roadway combined with hydraulic punching and ordinary drainage holes was simulated, and the gas extraction results were used to evaluate the outburst danger of roadway excavation and to verify the engineering practice. Results show that gas extraction can reduce coal seam gas pressure and slow down the rate of gas release, and the established hydraulic-mechanical coupling model can accurately reveal the law of gas extraction by drilling and punching boreholes. After adopting the gas extraction technology of drilling and hydraulic punching from the floor roadway, the remaining gas pressure and gas content are reduced to lower than 0.5 MPa and 5.68 m3/t, respectively. The achievements set a theoretical foundation to the application of drilling and punching integrated technology to enhance gas extraction.


2022 ◽  
Vol 28 (3) ◽  
pp. 241-252
Author(s):  
Sugeng Krisnanto

Abstract Two theoretical equations are developed to calculate the ratio of undrained shear strength to the vertical effective stress (the ratio of (su/sv’)) for normally consolidated saturated cohesive soils. The effective stress approach is used as the basis in the development of the theoretical equations. The theoretical equations are developed by relating the total and the effective stress paths. The development of the excess pore-water pressure is quantified using Skempton A and B pore-water pressure parameters. The theoretical equations are developed for two initial stress conditions: (i) an initially hydrostatic condition and (ii) an initially Ko (non-hydrostatic) condition. The performance of the theoretical equations of this study is compared with field and laboratory measurement data obtained from the literature. The close results between the theoretical equations and the measurements show that the theoretical equations of this study can compute the ratio of (su/sv’) well. Using the theoretical equations, the values of the ratio of (su/sv’) commonly used in engineering practice can be explained from the soil mechanics framework. Keywords: Saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation. Abstrak Dua persamaan teoritis dikembangkan untuk menghitung rasio kuat geser tak teralirkan dengan tegangan efektif vertikal (rasio (su/sv’)) untuk tanah kohesif jenuh terkonsolidasi normal. Pendekatan tegangan efektif dijadikan dasar dalam pengembangan kedua persamaan teoretis ini. Persamaan teoretis tersebut dikembangkan menghubungkan lintasan tegangan total dan lintasan tegangan efektif. Kenaikan tekanan air pori ekses dikuantifikasi menggunakan parameter tekanan air pori A dan B dari Skempton. Persamaan teoretis dikembangkan untuk dua kondisi tegangan awal: (i) tegangan awal hidrostatik dan (ii) teganan awal Ko (non hidrostatik). Kinerja kedua persamaan teoretis tersebut dibandingkan terhadap data pengukuran lapangan dan pengujian laboratorium yang diperoleh dari literatur. Persamaan teoretis dari studi ini memiliki kinerja yang baik dalam memperhitungan rasio (su/sv’) yang ditunjukkan dengan dekatnya hasil perhitungan menggunakan persamaan teoretis dan hasil pengukuran lapangan maupun pengujan laboratorium. Dengan persamaan teoretis tersebut, nilai rasio (su/sv’) yang biasa digunakan dalam rekayasa praktis bisa dijelaskan secara mekanika tanah. Kata-kata Kunci: Tanah kohesif jenuh, rasio c/p, tanah terkonsolidasi normal, kuat geser tak teralirkan, kuat geser efektif, persamaan teoretis.  


Author(s):  
Si-Ming Zhou ◽  
Jing-Zhong Tong ◽  
Gen-Shu Tong ◽  
Zhang Lei ◽  
Xiang Jiang ◽  
...  

Concrete-filled steel tubular (CFST) column has been widely used in engineering practice. In the process of assembling two columns to form a slender member, assembling errors (AE) are inevitably produced at the section of connection. When the AE are too large, the global buckling resistance of slender column would be significantly affected. Therefore, it is necessary to investigate the influence of AE on the stability performance of slender CFST columns. In this study, an axial compressive test involving three CFST columns with AE (AE-CFST columns) was conducted. A refined finite element (FE) model is established for further parametric analysis. Based on a simplified analytical model by analyzing the isolated steel connecting plate, a theoretical formula is proposed for predicting the critical thickness [Formula: see text] of the connecting plate. When the thickness [Formula: see text] of the connecting plate meets its requirement, the failure at the section of connection caused by AE could be effectively prevented. Stability design curves considering the influence of AE ratio (the ratio between assembling error and sectional depth of column) are proposed based on numerous FE examples. It is found that the proposed design curves are reliable for the design of AE-CFST columns with different AE ratios.


Sign in / Sign up

Export Citation Format

Share Document