Polynomial optimization methods for determining lower bounds on decentralized assignability

Author(s):  
Alborz Alavian ◽  
Michael Rotkowitz
2019 ◽  
Vol 44 (4) ◽  
pp. 1192-1207 ◽  
Author(s):  
Amir Ali Ahmadi ◽  
Georgina Hall

In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial minimization problems have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on an arbitrary closed basic semialgebraic set. In this paper, we show that such hierarchies could in fact be designed from much more limited Positivstellensätze dating back to the early 20th century that only certify positivity of a polynomial globally. More precisely, we show that any inner approximation to the cone of positive homogeneous polynomials that is arbitrarily tight can be turned into a converging hierarchy of lower bounds for general polynomial minimization problems with compact feasible sets. This in particular leads to a semidefinite programming–based hierarchy that relies solely on Artin’s solution to Hilbert’s 17th problem. We also use a classical result from Pólya on global positivity of even forms to construct an “optimization-free” converging hierarchy for general polynomial minimization problems with compact feasible sets. This hierarchy requires only polynomial multiplication and checking nonnegativity of coefficients of certain fixed polynomials. As a corollary, we obtain new linear programming–based and second-order cone programming–based hierarchies for polynomial minimization problems that rely on the recently introduced concepts of diagonally dominant sum of squares and scaled diagonally dominant sum of squares polynomials. We remark that the scope of this paper is theoretical at this stage, as our hierarchies—though they involve at most two sum of squares constraints or only elementary arithmetic at each level—require the use of bisection and increase the number of variables (respectively, the degree) of the problem by the number of inequality constraints plus three (respectively, by a factor of two).


Author(s):  
Jason J. Bramburger ◽  
David Goluskin

Many monostable reaction–diffusion equations admit one-dimensional travelling waves if and only if the wave speed is sufficiently high. The values of these minimum wave speeds are not known exactly, except in a few simple cases. We present methods for finding upper and lower bounds on minimum wave speed. They rely on constructing trapping boundaries for dynamical systems whose heteroclinic connections correspond to the travelling waves. Simple versions of this approach can be carried out analytically but often give overly conservative bounds on minimum wave speed. When the reaction–diffusion equations being studied have polynomial nonlinearities, our approach can be implemented computationally using polynomial optimization. For scalar reaction–diffusion equations, we present a general method and then apply it to examples from the literature where minimum wave speeds were unknown. The extension of our approach to multi-component reaction–diffusion systems is then illustrated using a cubic autocatalysis model from the literature. In all three examples and with many different parameter values, polynomial optimization computations give upper and lower bounds that are within 0.1% of each other and thus nearly sharp. Upper bounds are derived analytically as well for the scalar reaction-diffusion equations.


2018 ◽  
Author(s):  
Gérard Cornuéjols ◽  
Javier Peña ◽  
Reha Tütüncü
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document