A c-band low phase-noise oscillator using complementary split-ring resonators

Author(s):  
Heng Du ◽  
Feihong Tang ◽  
Hui Zhang ◽  
Xutao Yu ◽  
Peng Chen
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Mehdi Hamidkhani ◽  
Rasool Sadeghi ◽  
Mohamadreza Karimi

In modern microwave telecommunication systems, especially in low phase noise oscillators, there is a need for resonators with low insertion losses and high Q-factor. More specifically, it is of high interest to design resonators with high group delay. In this paper, three novel dual-band complementary split-ring resonators (CSRRs) featuring high group delay etched on the waveguide surface by using substrate integrated waveguides are investigated and proposed. They are designed for a frequency range of 4.5–5.5 GHz. Group delay rates for the first, second, and third resonators were approximated as much as 23 ns, 293 ns, and 90 ns, respectively. We also proposed a new practical method to develop a wide tuning range SIW CSRR cavity resonator with a small tuning voltage in the second resonator, which leads to about 19% and 1% of tuning frequency band in the first and second bands, respectively. Finally, some of their applications in the design of filter, diplexer, and low phase noise oscillator will be investigated.


2017 ◽  
Vol 53 (14) ◽  
pp. 933-935 ◽  
Author(s):  
Jie Xu ◽  
Yinjie Cui ◽  
Zhengbin Xu ◽  
Jian Guo ◽  
Cheng Qian ◽  
...  

2015 ◽  
Vol 8 (8) ◽  
pp. 1155-1161 ◽  
Author(s):  
Yong Liu ◽  
Neng Xie ◽  
Xiaohong Tang ◽  
Fei Xiao

In this paper, a novel microwave oscillator incorporating miniaturized nested split-ring resonators is proposed. The high-quality (Q) factor and wide spurious-free band of the NSRR contribute to low-phase noise and high-harmonic suppression of the proposed oscillator circuits. In addition, the NSRR is featured by compact size of 0.12λg × 0.12λg, where λg is the guided wavelength of resonance frequency. The fabricated 2.4 GHz oscillator has an output power of 11.7 dBm with 5 V DC supply and 10 mA current consumption. The second harmonic suppression is −45.49 dBc, the phase noise is −110 dBc/Hz @100 kHz, and the DC–RF conversion efficiency is measured as 30%.


Sign in / Sign up

Export Citation Format

Share Document