microwave frequency
Recently Published Documents


TOTAL DOCUMENTS

1634
(FIVE YEARS 322)

H-INDEX

52
(FIVE YEARS 9)

Author(s):  
Lalitha Kandasamy ◽  
Manjula J.

Background: Microwave imaging is one of the emerging non-invasive portable imaging techniques, which uses nonionized radiations to take a detailed view of biological tissues in the microwave frequency range. Brain stroke is an emergency caused by the interruption of the blood supply into parts of brain, leading to the loss of millions of brain cells. Imaging plays a major role in stroke diagnosis for prompt treatment. Objective: This work proposes a computationally efficient algorithm called the GPR algorithm to locate the blood clot with a size of 10 mm in microwave images. Methods: The electromagnetic waves are radiated, and backscattered reflections are received by Antipodal Vivaldi antenna with the parasitic patch (48 mm*21 mm). The received signals are converted to a planar 2D image, and the depth of the blood clot is identified from the B-scan image. The novelty of this work lies in applying the GPR algorithm for the accurate positioning of a blood clot in a multilayered head tissue. Results: The proposed system is effectively demonstrated using a 3D EM simulator and simulated results are verified in a Vector network analyzer (E8363B) with an experimental setup. Conclusion: This an alternative safe imaging modality compared to present imaging systems(CT and MRI)


2022 ◽  
Vol 8 ◽  
Author(s):  
Meize Li ◽  
Yahong Liu ◽  
Lianlian Du ◽  
Xin Zhou ◽  
Kun Song ◽  
...  

Topological material has been widely studied in recent years because of excellent physical properties. In this paper, a Weyl topological material composed of the double left-handed helixes is presented. It is demonstrated that the proposed structure possesses a two-dimensional complete topological nontrivial bandgap for a fixed kz in the microwave frequency, and the robust surface states are observed. This unique function provides a promising platform for the development of photonics and electromagnetics.


Abstract: This paper present a novel design and development of inverted U-slot rectangular ring coupled monopole microstrip antenna (IURCMMA) for quad band operation. The monopole microstrip antennas are commonly designed for wide band operation. However, by placing the optimum ring slots in the form of slits on the radiating patch, the antenna can be made to operate at different frequency bands. The proposed antenna operates in the frequency range of 1.5 to 10 GHz with a peak gain of 8.69 dB and gives omni directional radiation pattern in both E and H planes. The measured and simulated results of return loss are in good agreement with each other. With these features the proposed antenna may find many applications at microwave frequency range. Keywords: Monopole, Rectangular, Bandwidth, Quad band , Gain.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8452
Author(s):  
Stylianos D. Assimonis ◽  
Sandhya Chandravanshi ◽  
Okan Yurduseven ◽  
Dmitry Zelenchuk ◽  
Oleksandr Malyuskin ◽  
...  

In this paper, we present the application of a resonant electric based metamaterial element and its two-dimensional metasurface implementation for a variety of emerging wireless applications. Metasurface apertures developed in this work are synthesized using sub-wavelength sampled resonant electric-based unit-cell structures and can achieve electromagnetic wave manipulation at microwave frequencies. The presented surfaces are implemented in a variety of forms, from absorption surfaces for energy harvesting and wireless power transfer to wave-chaotic surfaces for compressive sensing based single-pixel direction of arrival estimation and reflecting surfaces. It is shown that the resonant electric-synthesized metasurface concept offers a significant potential for these applications with high fidelity absorption, transmission and reflection characteristics within the microwave frequency spectrum.


2021 ◽  
Author(s):  
Yu Rong ◽  
Panagiotis C. Theofanopoulos ◽  
Georgios C. Trichopoulos ◽  
Daniel W. Bliss

Abstract This study presents findings at Terahertz (THz) frequency band for non-contact cardiac sensing application. For the first time, cardiac pulse information is simultaneously extracted using THz waves based on the two established principles in electronics and optics. The first fundamental principle is micro-Doppler (mD) motion effect, initially introduced in coherent laser radar system 1, 2 and first experimentally demonstrated for vital sign detection 3. This motion based method, primarily using coherent phase information from the radar receiver, has been widely exploited in microwave frequency bands and has recently found popularity in millimeter waves (mmWave). The second fundamental principle is reflectance based optical measurement using infrared or visible light. The variation in the light reflection is proportional to the volumetric change of the heart, often referred as photoplethysmography (PPG). PPG has been a popular technology for pulse diagnosis. Recently it has been widely incorporated into various smart wearables for long-term monitoring, such fitness training and sleep monitoring. Herein, the concept of Terahertz-Wave-Plethysmography (TPG) is introduced, which detects blood volume changes in the upper dermis tissue layer by measuring the reflectance of THz waves, similar to the existing remote PPG (rPPG) principle 4. The TPG principle is justified by scientific deduction, electromagnetic wave (EM) simulations and carefully designed experimental demonstrations. Additionally, pulse measurements from various peripheral body parts of interest (BOI), palm, inner elbow, temple, fingertip and forehead, are demonstrated using a wideband THz sensing system developed by Terahertz Electronics Lab at Arizona State University (ASU), Tempe. Among the BOIs under test, it is found that the measurements from forehead BOI gives the best accuracy with mean heart rate (HR) estimation error 1.51 beats per minute (BPM) and stand deviation (std) 1.08 BPM. The results validate the feasibility of radar based plethysmography for direct pulse monitoring. Finally, a comparative study on pulse sensitivity in TPG and rPPG is conducted. The results indicate that the TPG contains more pulsatile from the forehead BOI than that in the rPPG signals and thus generate better heart rate (HR) estimation statistic in the form of empirical cumulative distribution function (CDF) of HR estimation error.


2021 ◽  
Author(s):  
Qingqing Meng ◽  
Zihang Zhu ◽  
Tao Lin ◽  
He Li ◽  
Guodong Wang ◽  
...  

Abstract In this paper, a novel and efficient photonic-assisted remote frequency measurement (RFM) system with a significantly simplified structure and flexible operation range is proposed. By simply changing the dispersion coefficient or length of the dispersion medium in the central station (CS), the microwave frequency measurement range in the remote antenna unit (RAU) can be tuned. In this system, the RAU and the CS is separated to ensure the concealment and safety of the signal processing unit. The measurement range of the RFM system can be tuned easily during the measurement process without system reconstruction, and different RAUs located at different places can be controlled to work at the same measurement range. The simulation results show that a frequency measurement over the high frequency range (>18 GHz) can be achieved with a measurement error better than ±0.2 GHz. Noteworthy, the impact of the non-ideal factors such as bias drift, intensity noise, phase noise, the equivalent deviation of the polarization beam splitter (PBS), and the dispersion value of the single mode fiber (SMF) is also discussed. It has been proved that they have little influence on the system performance over the high frequency range.


2021 ◽  
Vol 11 (24) ◽  
pp. 11928
Author(s):  
Xing Jia ◽  
Longhuang Tang ◽  
Shenggang Liu ◽  
Heli Ma ◽  
Tianjiong Tao ◽  
...  

Femtosecond laser-excited generation of frequency-tunable microwave pulses, based on an unbalanced single-arm interferometer with frequency-to-time mapping, has been proposed and demonstrated with easy-to-obtain commercial devices. The optical wave-to-microwave frequency conversion, which involves continuous tuning in the range from 2.0 GHz to 19.7 GHz, was achieved based on simple spatial–optical group delay adjustment. Additionally, the pulse duration of the microwave waveform was measured to be 24 ns as the length of the linear dispersion optical fiber was fixed at 20 km. In addition, owing to the designs of the single-arm optical path and polarization-independent interference, the generated microwave pulse train had better stability in terms of frequency and electrical amplitude. Furthermore, a near-triangular-shaped microwave pulse at 4.5 GHz was experimentally obtained by the superposition of two generated sinusoidal signals, which verified the potential of this system to synthesize special microwave waveform pulses.


2021 ◽  
Author(s):  
Shiva Hayati Raad

Absorbers are one of the key components in the realm of electromagnetic compatibility. Depending on the frequency range of interest, different types of absorbers can be utilized for this purpose. This chapter introduces the analysis and modeling of ferrite-based absorbers for low-frequency applications (below 1 GHz) and discusses the issues encountered in their installation, resulting in air gaps. Later, different kinds of pyramidal absorbers, commonly used in the broadband microwave frequency range (above 1 GHz), are presented, and analytical and numerical approaches for predicting their performance are reviewed. The combination of the ferrite tile and pyramidal dielectric absorbers is also provided. Then, some practical aspects of designing hybrid absorbers, including the influence of carbon loading and matching layer on their performance, are mentioned. Finally, the absorber operating frequency extension to the millimeter-wave spectrum using metamaterial structures or graphene material is presented.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012073
Author(s):  
Ding Wang ◽  
V V Davydov ◽  
V Yu Rud

Abstract The state of essential various quantum standards of GNSS frequencies for today are collected and presented, the results of analysis in the direction of modernization of time synchronization systems in global navigation satellite systems are presented. The most perspective directions of modernization of global navigation satellite systems are mentioned – the development of new atomic clocks on the mercury ions -199. The data on experimental satellite gives encouraging results.


Sign in / Sign up

Export Citation Format

Share Document