Reactive Power Optimization for Wind Farms Group Integrated System

Author(s):  
Shipeng Liu ◽  
Liping Guo ◽  
Lijun Kang ◽  
Leiqiong Zhang ◽  
Han Guo
Author(s):  
Carolina G. Marcelino ◽  
Paulo E. M. Almeida ◽  
Elizabeth F. Wanner ◽  
Leonel M. Carvalho ◽  
Vladimiro Miranda

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fang Zeng ◽  
Hongchun Shu

This paper constructs a reliable reactive power optimization (RPO) model of power grid with the controlled participation of high-penetration wind and solar energies and provides a novel fast atom search optimization (FASO) algorithm to reach a set of solutions to the RPO problem. The developed FASO algorithm owns prominent merits of high searching efficiency and premature convergence avoidance compared with the original atom search optimization (ASO) algorithm, which is applied to determine the optimal dispatch scheme including terminal voltage of generators, the capacity of static VAR compensator (SVC), reactive power output of wind and solar energies, and the tap ratio of transformers. There are two objective functions to be minimized for maintaining the safe and reliable operation of power grid, i.e., total power loss of transmission lines and total voltage deviation of nodes. Meanwhile, the regulation capacities of wind farms and photovoltaic (PV) stations are evaluated based on different weather conditions, i.e., wind speed and solar irradiation. Particularly, the reactive power outputs of wind and solar energies can be globally controlled to coordinate with other controllable units instead of a local self-control. Eventually, the extended IEEE 9-bus and IEEE 39-bus systems are introduced to test the performance of the FASO algorithm for RPO problem. It has been verified that FASO can not only meet the optimal regulation requirements of RPO but also obtain high-quality regulation schemes with the fastest convergence speed and highest convergence stability in contrast with else algorithms.


Sign in / Sign up

Export Citation Format

Share Document