Reactive power optimization control of wind farms with fixed-speed wind turbine generators

Author(s):  
Xunwen Su ◽  
Zengqiang Mi ◽  
Xingjie Liu ◽  
Tao Wu
Solar Energy ◽  
2003 ◽  
Author(s):  
G. R. Bhagwatikar ◽  
W. Z. Gandhare

It is well known that the wind power has definitely certain impact on the grid power. Issues associated with the integration of wind power into the utility grid are interface issues, operational issues and planning issues. Interface issues include harmonics, reactive power consumption, voltage regulation and frequency control. Operational issues are intermittent power generation, operating reserve requirements, unit commitment and economic despatch. And planning issues are concerned with intermittent wind resources compared to conventional power resources. An important question, when connecting the wind turbine generators to the utility grid, is how much the power / voltage quality will be influenced, since the power production by wind turbines is intermittent, quantity wise as well as quality wise. This paper is focused on the on comparison between the constant speed wind turbines and variable speed wind turbines, reactive power consumption and harmonics generated by both wind turbines. Total harmonic distortion is calculated by the application of C++ software and a comparison is done between the generators with respect to the harmonics. It is observed that constant speed wind turbine generates low order harmonics and variable speed turbine generates high order harmonics. On the basis of results, some solutions are suggested to improve the wind power quality and to reduce reactive power consumption. It seems that variable speed wind turbines with electronic interface are better with respect to the utility grid point of view.


Author(s):  
Carolina G. Marcelino ◽  
Paulo E. M. Almeida ◽  
Elizabeth F. Wanner ◽  
Leonel M. Carvalho ◽  
Vladimiro Miranda

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fang Zeng ◽  
Hongchun Shu

This paper constructs a reliable reactive power optimization (RPO) model of power grid with the controlled participation of high-penetration wind and solar energies and provides a novel fast atom search optimization (FASO) algorithm to reach a set of solutions to the RPO problem. The developed FASO algorithm owns prominent merits of high searching efficiency and premature convergence avoidance compared with the original atom search optimization (ASO) algorithm, which is applied to determine the optimal dispatch scheme including terminal voltage of generators, the capacity of static VAR compensator (SVC), reactive power output of wind and solar energies, and the tap ratio of transformers. There are two objective functions to be minimized for maintaining the safe and reliable operation of power grid, i.e., total power loss of transmission lines and total voltage deviation of nodes. Meanwhile, the regulation capacities of wind farms and photovoltaic (PV) stations are evaluated based on different weather conditions, i.e., wind speed and solar irradiation. Particularly, the reactive power outputs of wind and solar energies can be globally controlled to coordinate with other controllable units instead of a local self-control. Eventually, the extended IEEE 9-bus and IEEE 39-bus systems are introduced to test the performance of the FASO algorithm for RPO problem. It has been verified that FASO can not only meet the optimal regulation requirements of RPO but also obtain high-quality regulation schemes with the fastest convergence speed and highest convergence stability in contrast with else algorithms.


Sign in / Sign up

Export Citation Format

Share Document