hybrid algorithm
Recently Published Documents


TOTAL DOCUMENTS

2721
(FIVE YEARS 785)

H-INDEX

51
(FIVE YEARS 10)

Diagnosis of COVID-19 pneumonia using patients’ chest X-Ray images is new but yet important task in the field of medicine. Researchers from different parts of the globe have developed many deep learning models to classify COVID-19. The performance of feature extraction and classifier plays a vital role in the recognizing the different patterns in the image. The pivotal process is the extraction of optimum features from the chest X-Ray images. The main goal of this study is to design an efficient hybrid algorithm that integrates the robustness of MobileNet (using transfer learning approach) to extract features and Support Vector Machine (SVM) to classify COVID-19. Experiments were conducted to test the proposed algorithm and it was found to have a high classification accuracy of 95%.


Author(s):  
Malathy Jawahar ◽  
L. Jani Anbarasi ◽  
Prassanna Jayachandran ◽  
Manikandan Ramachandran ◽  
Fadi Al-Turjman

Diagnosis of COVID-19 pneumonia using patients’ chest X-Ray images is new but yet important task in the field of medicine. Researchers from different parts of the globe have developed many deep learning models to classify COVID-19. The performance of feature extraction and classifier plays a vital role in the recognizing the different patterns in the image. The pivotal process is the extraction of optimum features from the chest X-Ray images. The main goal of this study is to design an efficient hybrid algorithm that integrates the robustness of MobileNet (using transfer learning approach) to extract features and Support Vector Machine (SVM) to classify COVID-19. Experiments were conducted to test the proposed algorithm and it was found to have a high classification accuracy of 95%.


2023 ◽  
Vol 12 (6) ◽  
pp. 1
Author(s):  
Ravi S. Singh ◽  
Swati Gupta ◽  
Isha Agarwal

Author(s):  
Hazim Sadeq Mohsin Al-Wazni ◽  
Shatha Suhbat Abdulla Al-Kubragyi

This paper presents a hybrid algorithm by applying a hybrid firefly and particle swarm optimization algorithm (HFPSO) to determine the optimal sizing of distributed generation (DG) and distribution static compensator (D-STATCOM) device. A multi-objective function is employed to enhance the voltage stability, voltage profile, and minimize the total power loss of the radial distribution system (RDS). Firstly, the voltage stability index (VSI) is applied to locate the optimal location of DG and D-STATCOM respectively. Secondly, to overcome the sup-optimal operation of existing algorithms, the HFPSO algorithm is utilized to determine the optimal size of both DG and D-STATCOM. Verification of the proposed algorithm has achieved on the standard IEEE 33-bus and Iraqi 65-bus radial distribution systems through simulation using MATLAB. Comprehensive simulation results of four different cases show that the proposed HFPSO demonstrates significant improvements over other existing algorithms in supporting voltage stability and loss reduction in distribution networks. Furthermore, comparisons have achieved to demonstrate the superiority of HFPSO algorithms over other techniques due to its ability to determine the global optimum solution by easy way and speed converge feature.


2022 ◽  
Vol 8 ◽  
pp. e834
Author(s):  
Sara Mejahed ◽  
M Elshrkawey

The demand for virtual machine requests has increased recently due to the growing number of users and applications. Therefore, virtual machine placement (VMP) is now critical for the provision of efficient resource management in cloud data centers. The VMP process considers the placement of a set of virtual machines onto a set of physical machines, in accordance with a set of criteria. The optimal solution for multi-objective VMP can be determined by using a fitness function that combines the objectives. This paper proposes a novel model to enhance the performance of the VMP decision-making process. Placement decisions are made based on a fitness function that combines three criteria: placement time, power consumption, and resource wastage. The proposed model aims to satisfy minimum values for the three objectives for placement onto all available physical machines. To optimize the VMP solution, the proposed fitness function was implemented using three optimization algorithms: particle swarm optimization with Lévy flight (PSOLF), flower pollination optimization (FPO), and a proposed hybrid algorithm (HPSOLF-FPO). Each algorithm was tested experimentally. The results of the comparative study between the three algorithms show that the hybrid algorithm has the strongest performance. Moreover, the proposed algorithm was tested against the bin packing best fit strategy. The results show that the proposed algorithm outperforms the best fit strategy in total server utilization.


Author(s):  
Yong Yang ◽  
Young Chun ko

With the rapid development of online e-commerce, traditional collaborative filtering algorithms have the disadvantages of data set reduction and sparse matrix filling cannot meet the requirements of users. This paper takes handicrafts as an example to propose the design and application of handicraft recommendation system based on an improved hybrid algorithm. Based on the theory of e-commerce system, through the traditional collaborative filtering algorithm of users, the personalized e-commerce system of hybrid algorithm is designed and analyzed. The personalized e-commerce system based on hybrid algorithm is further proposed. The component model of the business recommendation system and the specific steps of the improved hybrid algorithm based on user information are given. Finally, an experimental analysis of the improved hybrid algorithm is carried out. The results show that the algorithm can effectively improve the effectiveness and exemption of recommending handicrafts. What’s more, it can reduce the user item ratings of candidate set and improve accuracy of the forecast recommendation.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 495
Author(s):  
Arpad Gellert ◽  
Radu Sorostinean ◽  
Bogdan-Constantin Pirvu

Manual work accounts for one of the largest workgroups in the European manufacturing sector, and improving the training capacity, quality, and speed brings significant competitive benefits to companies. In this context, this paper presents an informed tree search on top of a Markov chain that suggests possible next assembly steps as a key component of an innovative assembly training station for manual operations. The goal of the next step suggestions is to provide support to inexperienced workers or to assist experienced workers by providing choices for the next assembly step in an automated manner without the involvement of a human trainer on site. Data stemming from 179 experiment participants, 111 factory workers, and 68 students, were used to evaluate different prediction methods. From our analysis, Markov chains fail in new scenarios and, therefore, by using an informed tree search to predict the possible next assembly step in such situations, the prediction capability of the hybrid algorithm increases significantly while providing robust solutions to unseen scenarios. The proposed method proved to be the most efficient for next assembly step prediction among all the evaluated predictors and, thus, the most suitable method for an adaptive assembly support system such as for manual operations in industry.


Author(s):  
Mohd Kamir Yusof ◽  
Wan Mohd Amir Fazamin Wan Hamzah ◽  
Nur Shuhada Md Rusli

The coronavirus COVID-19 is affecting 196 countries and territories around the world. The number of deaths keep on increasing each day because of COVID-19. According to World Health Organization (WHO), infected COVID-19 is slightly increasing day by day and now reach to 570,000. WHO is prefer to conduct a screening COVID-19 test via online system. A suitable approach especially in string matching based on symptoms is required to produce fast and accurate result during retrieving process. Currently, four latest approaches in string matching have been implemented in string matching; characters-based algorithm, hashing algorithm, suffix automation algorithm and hybrid algorithm. Meanwhile, extensible markup language (XML), JavaScript object notation (JSON), asynchronous JavaScript XML (AJAX) and JQuery tehnology has been used widelfy for data transmission, data storage and data retrieval. This paper proposes a combination of algorithm among hybrid, JSON and JQuery in order to produce a fast and accurate results during COVID-19 screening process. A few experiments have been by comparison performance in term of execution time and memory usage using five different collections of datasets. Based on the experiments, the results show hybrid produce better performance compared to JSON and JQuery. Online screening COVID-19 is hopefully can reduce the number of effected and deaths because of COVID.


Sign in / Sign up

Export Citation Format

Share Document