Simulation of Electromagnetic Oscillations in an Active Telegraph Line

Author(s):  
Zinovii Nytrebych ◽  
Ruslan Politanskyi ◽  
Oksana Malanchuk ◽  
Roman Petryshyn ◽  
Maria Vistak
2020 ◽  
Author(s):  
Luiz C L Botelho

WE present several new studies on the mathematical methods formulation of the important problem of electromagnetic oscillations in cavities on anisotropic and axial anisotropic medium . This paper has appeared on Luiz.C.L.Botelho. . Some Comments on electromagnetic oscillations in anisotropic cavities -wave equations and boundary conditions Physics & Astronomy International Journal , v. 2, p. 562-565, 2018


Antennas ◽  
2021 ◽  
Author(s):  
Yu. G. Belov ◽  
V. V. Biryukov ◽  
I. A. Egorov

The methods for measuring the parameters of dielectric materials of foil plates have been considered. It has been shown that for “non-destructive measurements” (i.e., without removing the metal foil from the dielectric plate), a method based on the excitation of electromagnetic oscillations in a rectangular plate considered as a resonator can be used. Based on the results of measurements of their resonant frequencies and Q-factors, the relative permittivity and the tangent of the dielectric loss angle of the material can be determined. The calculated relations obtained by the authors of the article in one of the early works using the electrodynamic model of a resonator with “magnetic walls” at the ends have been presented. The Q-factor of the resonator has been calculated by the perturbation method, taking into account the losses in the plate dielectric and metallization layers. The results of measurements for four samples from different dielectrics in the frequency range 200...1000 MHz have been presented. The experimental method has been described, in particular, the method of identifying the type of oscillation, the procedure for processing the measurement results. Due to the high sensitivity of the vector analyzer, measurements have been made with a possible small connection of the resonator (metallized plate) with the measuring circuit. This made it possible to minimize the influence of the coupling elements on the measured Qfactor of the oscillations and to consider this Q-factor close to its own. The presented results are in good agreement with the reference data for the materials. The conducted studies have shown the possibility of using a resonator model with “magnetic walls” at the ends for the analysis of electromagnetic oscillations in a foil dielectric plate and, accordingly, using the relations obtained in this case to determine the parameters of the dielectric plate. The conditions for using this model are the small thickness of the plate in comparison with its transverse dimensions and relatively low operating frequencies. The method, which is based on the calculated ratios of the electrodynamic model of the resonator with “magnetic” walls at the ends, provides a sufficiently high accuracy of determining the relative permittivity of the plate material, which led to the use of it (the method) in practice to control the parameters of foil dielectric plates intended for the manufacture of microwave and UHF-band microcircuits. The studies, the results of which have been presented in this paper, allow us to conclude that this method can also be recommended for determining the tangent of the dielectric loss angle of the plate material.


1970 ◽  
Vol 11 (11-12) ◽  
pp. 757-762
Author(s):  
R. S. Bernshtein ◽  
V. G. Sloushch ◽  
R. S. Mil'shenko ◽  
Yu. V. Levchenko ◽  
G. S. Red'ko

Sign in / Sign up

Export Citation Format

Share Document