Specification of abstract data types using real-time process algebra (RTFA)

Author(s):  
X. Tan ◽  
Yingxu Wang
Author(s):  
Yingxu Wang ◽  
Xinming Tan ◽  
Cyprian F. Ngolah ◽  
Philip Sheu

Type theories are fundamental for underpinning data object modeling and system architectural design in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO) technologies for software system design and implementation. This paper presents a formal modeling methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models (UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies of RTPA. This work has been applied in a number of real-time and non-real-time system designs such as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic code generator based on RTPA.


Author(s):  
Yingxu Wang ◽  
Xinming Tan ◽  
Cyprian F. Ngolah ◽  
Philip Sheu

Type theories are fundamental for underpinning data object modeling and system architectural design in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO) technologies for software system design and implementation. This paper presents a formal modeling methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models (UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies of RTPA. This work has been applied in a number of real-time and non-real-time system designs such as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic code generator based on RTPA.


1988 ◽  
Vol 11 (1) ◽  
pp. 49-63
Author(s):  
Andrzej Szalas

In this paper we deal with a well known problem of specifying abstract data types. Up to now there were many approaches to this problem. We follow the axiomatic style of specifying abstract data types (cf. e.g. [1, 2, 6, 8, 9, 10]). We apply, however, the first-order temporal logic. We introduce a notion of first-order completeness of axiomatic specifications and show a general method for obtaining first-order complete axiomatizations. Some examples illustrate the method.


1987 ◽  
Vol 22 (4) ◽  
pp. 103-110 ◽  
Author(s):  
J D Eckart

2007 ◽  
Vol 17 (3) ◽  
pp. 183-203 ◽  
Author(s):  
Borislav Nikolik ◽  
Dick Hamlet

Sign in / Sign up

Export Citation Format

Share Document