The Formal Design Models of a Set of Abstract Data Types (ADTs)

Author(s):  
Yingxu Wang ◽  
Xinming Tan ◽  
Cyprian F. Ngolah ◽  
Philip Sheu

Type theories are fundamental for underpinning data object modeling and system architectural design in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO) technologies for software system design and implementation. This paper presents a formal modeling methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models (UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies of RTPA. This work has been applied in a number of real-time and non-real-time system designs such as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic code generator based on RTPA.

Author(s):  
Yingxu Wang ◽  
Xinming Tan ◽  
Cyprian F. Ngolah ◽  
Philip Sheu

Type theories are fundamental for underpinning data object modeling and system architectural design in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO) technologies for software system design and implementation. This paper presents a formal modeling methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models (UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies of RTPA. This work has been applied in a number of real-time and non-real-time system designs such as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic code generator based on RTPA.


2021 ◽  
Vol 4 ◽  
pp. 78-87
Author(s):  
Yury Yuschenko

In the Address Programming Language (1955), the concept of indirect addressing of higher ranks (Pointers) was introduced, which allows the arbitrary connection of the computer’s RAM cells. This connection is based on standard sequences of the cell addresses in RAM and addressing sequences, which is determined by the programmer with indirect addressing. Two types of sequences allow programmers to determine an arbitrary connection of RAM cells with the arbitrary content: data, addresses, subroutines, program labels, etc. Therefore, the formed connections of cells can relate to each other. The result of connecting cells with the arbitrary content and any structure is called tree-shaped formats. Tree-shaped formats allow programmers to combine data into complex data structures that are like abstract data types. For tree-shaped formats, the concept of “review scheme” is defined, which is like the concept of “bypassing” trees. Programmers can define multiple overview diagrams for the one tree-shaped format. Programmers can create tree-shaped formats over the connected cells to define the desired overview schemes for these connected cells. The work gives a modern interpretation of the concept of tree-shaped formats in Address Programming. Tree-shaped formats are based on “stroke-operation” (pointer dereference), which was hardware implemented in the command system of computer “Kyiv”. Group operations of modernization of computer “Kyiv” addresses accelerate the processing of tree-shaped formats and are designed as organized cycles, like those in high-level imperative programming languages. The commands of computer “Kyiv”, due to operations with indirect addressing, have more capabilities than the first high-level programming language – Plankalkül. Machine commands of the computer “Kyiv” allow direct access to the i-th element of the “list” by its serial number in the same way as such access is obtained to the i-th element of the array by its index. Given examples of singly linked lists show the features of tree-shaped formats and their differences from abstract data types. The article opens a new branch of theoretical research, the purpose of which is to analyze the expe- diency of partial inclusion of Address Programming in modern programming languages.


Author(s):  
Yingxu Wang ◽  
Cyprian F. Ngolah ◽  
Xinming Tan ◽  
Phillip C.Y. Sheu

Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. Lists as a finite sequence of elements are one of the most fundamental and widely used ADTs in system modeling, which provide a standard encapsulation and access interface for manipulating large-volume information and persistent data. This paper develops a comprehensive design pattern of formal lists using a doubly-linked-circular (DLC) list architecture. A rigorous denotational mathematics, Real-Time Process Algebra (RTPA), is adopted, which allows both architectural and behavioral models of lists to be rigorously designed and implemented in a top-down approach. The architectural models of DLC-Lists are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The behavioral models of DLC-Lists are specified and refined by a set of Unified Process Models (UPMs) in three categories namely the management operations, traversal operations, and node I/O operations. This work has been applied in a number of real-time and nonreal-time system designs such as a real-time operating system (RTOS+), a file management system (FMS), and the ADT library for an RTPA-based automatic code generation tool.


1991 ◽  
Vol 16 (6) ◽  
pp. 565-583 ◽  
Author(s):  
M Gargano ◽  
E Nardelli ◽  
M Talamo

1988 ◽  
Vol 11 (1) ◽  
pp. 49-63
Author(s):  
Andrzej Szalas

In this paper we deal with a well known problem of specifying abstract data types. Up to now there were many approaches to this problem. We follow the axiomatic style of specifying abstract data types (cf. e.g. [1, 2, 6, 8, 9, 10]). We apply, however, the first-order temporal logic. We introduce a notion of first-order completeness of axiomatic specifications and show a general method for obtaining first-order complete axiomatizations. Some examples illustrate the method.


1987 ◽  
Vol 22 (4) ◽  
pp. 103-110 ◽  
Author(s):  
J D Eckart

Sign in / Sign up

Export Citation Format

Share Document