Parallel Evolutionary Algorithm for EEG Optimization Problems

Author(s):  
Mohamed A. Meselhi ◽  
Saber M. Elsayed ◽  
Ruhul A. Sarker ◽  
Daryl L. Essam
2014 ◽  
Vol 555 ◽  
pp. 586-592
Author(s):  
Stanisław Krenich

The paper presents an approach to design optimization using parallel evolutionary algorithms. The only use of a simple evolutionary algorithm in order to generate the optimal solution for complex problems can be ineffective due to long calculation time. Thus a tournament evolutionary algorithm (EA) and a parallel computation method are proposed and used. The proposed EA does not require an analysis of the optimization model for each potential solution from evolutionary populations. The second element of the method consists in parallel running of evolutionary algorithms using multi-threads approach. The experiments were carried out for many different single design optimization problems and two of them are presented in the paper. The first problem considers a task of robot gripper mechanism optimization and the second one deals with the optimization of a shaft based on Finite Element Method analysis. From the generated results it is clear that proposed approach is a very effective tool for solving fairly complicated tasks considering both the accuracy and the time of calculation.


2013 ◽  
Vol 21 (1) ◽  
pp. 65-82 ◽  
Author(s):  
Hemant Kumar Singh ◽  
Tapabrata Ray ◽  
Ruhul Sarker

In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.


Sign in / Sign up

Export Citation Format

Share Document