Internal model control for multivariable over-actuated systems with multiple time delays

Author(s):  
Ahmed Dhahri ◽  
Imen Saidi ◽  
Dhaou Soudani
2017 ◽  
Vol 2017 ◽  
pp. 1-25 ◽  
Author(s):  
Wajdi Belhaj ◽  
Olfa Boubaker

In this paper, a MIMO PI design procedure is proposed for linear time invariant (LTI) systems with multiple time delays. The controller tuning is established in two stages and guarantees performances for set-point changes, disturbance variations, and parametric uncertainties. In the first stage, an iterative linear matrix inequality (ILMI) approach is extended to design PI controllers for systems with multiple time delays without performance guarantee, a priori. The second stage is devoted to improve the closed-loop performances by minimizing sensitivity functions. Simulations results carried out on the unstable distillation column, the stable industrial scale polymerization (ISP) reactor, and the non-minimum phase 4-tank benchmark prove the efficiency of the proposed approach. A comparative analysis with the conventional internal model control (IMC) approach, a multiloop IMC-PI approach, and a previous ILMI PID approach proves the superiority of the proposed approach compared to the related ones.


2012 ◽  
Vol 238 ◽  
pp. 66-70 ◽  
Author(s):  
Ling Quan ◽  
Hai Long Zhang ◽  
Yang Yang

Multivariable non-square systems with time delays widely exist in the chemical production process. Owing to the matrix that is adopted to describe non-square system is not square, many classical multivariable control methods can be hardly applied in such system. In this paper, based on non-square effective relative gain (NERGA), a novel internal model control method is proposed. Firstly the input and output loops of the non-square system are paired using NERGA, and then V-norm internal model controller is designed based on the model of squared subsystem. Finally, smulation study is carried out for a non-square system. The results can demonstrate the effectiveness of the proposed method.


Author(s):  
B. Mabu Sarif ◽  
D. V. Ashok Kumar ◽  
M. Venu Gopala Rao

Time delays are generally unavoidable in the designing frameworks for mechanical and electrical systems and so on.. In both continuous and discrete schemes, the existence of delay creates undesirable impacts on the under-thought which forces exacting constraints on attainable execution.The presence of delay confounds the design structure procedure also. It makes continuous systems boundless dimensional and also extends the readings in discrete systems fundamentally. As the Proportional-Integral-Derivative (PID) controller based on internal model control is essential and strong to address the vulnerabilities and aggravations of the model. But for an real industry process, they are less susceptible to noise than the PID controller.It results in just one tuning parameter which is the time constant of the closed-loop system λ, the internal model control filter factor.It additionally gives a decent answer for the procedure with huge time delays. The design of the PID controller based on the internal model control, with approximation of time delay using Pade’ and Taylor’s series is depicted in this paper. The first order filter used in the design provides good set-point tracking along with disturbance rejection.


Sign in / Sign up

Export Citation Format

Share Document