A secure two-factor mutual authentication and session key agreement protocol using Elliptic curve cryptography

Author(s):  
Preeti Chandrakar ◽  
Hari Om
Author(s):  
Preeti Chandrakar ◽  
Hari Om

In this article, the authors have proposed a secure two-factor remote user authentication and session key agreement protocol. As they have shown in the presented scheme, is precise and secure according to both formal and informal security analysis. For formal security analysis, they have applied BAN (Burrows-Abadi-Needham) logic which certifies that the presented scheme provides the amenity of mutual authentication and session key agreement safely. The informal security verification has shown that the proposed scheme is more vigorous against various sort of cruel threats. Moreover, the authors have simulated the presented scheme using broadly accepted AVISPA tool, whose simulation results make sure that the protocol is not dangerous from active and passive attacks together with replay and man-in-the-middle attacks. In addition, the performance evaluation and the security comparison have revealed that the presented scheme gives strong security as well as better complexity in the context of smart card memory requirement, communication cost and computation cost.


2013 ◽  
Vol 380-384 ◽  
pp. 2407-2410
Author(s):  
Xin Xu ◽  
Ping Zhu ◽  
Zheng Ping Jin ◽  
Hua Zhang

Recently, several protocols came into being successively to meet the requirement of efficient operations in low-power roaming environment with the fast advance of communication technologies. Unfortunately, these protocols are not a suitable candidate for special requirements in automobile roaming system such as low consumption, high performance and convenience since these protocols pay more attention to a common network environment. In this paper, we address the problem of mutual authentication and key agreement with user anonymity for an automobile roaming system. More specifically, we propose the protocol employs elliptic curve cryptography system to enhance operational efficiency and take into account common attacks and give corresponding resist measures to ensure security. The analysis shows our scheme is user friendly and secure.


Of late, Session Initiation Protocol (SIP) has become one of the popular signaling protocols especially for the multimedia communication system. Various protocols have been proposed by researchers to ensure access independence, authentication, and Key Agreement security characteristic. With the extensive growth of cellular networks, mobile traffic connected with the advancements of the wireless communication channel. In this scenario, Machine Type Communication (MTC) plays a crucial role in line with Long Term Evaluation-Advanced Networks as their communication happened between Machine to machine without human intervention. In order to reach Mobile Type Transmission (MTT) security condition, the access verification process required to pursue the verification and Key Agreement protocol. Moreover, the development of Group premised communication and individual authentication mechanisms to every Machine Type Communication device (MTTD) would lead to signal-congestion in real-time networking scenarios. Jinguo et al. proposed a Group-Based Verification and Key-Agreement protocol with dynamically updating policy for mutual authentication. Especially, they chose an asynchronous secret shared key merged to work with Diffie-Hellman protocol for establishing disjoint verification and session-key establishment across LTE Advanced Networks. However, the DH algorithm could not provide message integrity to upgrade the security feature namely integrity. In this paper, the algorithms Advanced Encryption Standard (AES) in addition to Elliptic Curve Diffie-Hellman (ECDH) can be integrated called an Elliptic Curve Digital Signature Algorithm (ECDSA)” which addresses verification and integrity.


2021 ◽  
Vol 19 (1) ◽  
pp. 66-85
Author(s):  
Yanrong Lu ◽  
◽  
Dawei Zhao ◽  

<abstract><p>Designing a secure authentication scheme for session initial protocol (SIP) over internet protocol (VoIP) networks remains challenging. In this paper, we revisit the protocol of Zhang, Tang and Zhu (2015) and reveal that the protocol is vulnerable to key-compromise impersonation attacks. We then propose a SIP authenticated key agreement protocol (AKAP) using elliptic curve cryptography (ECC). We demonstrate the correctness of the protocol using Burrows-Abadi-Needham (BAN), and its security using the AVISPA simulation tool. We also evaluate its performance against those of Zhang, Tang and Zhu, and others.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document