Analysis of Influence With Connected Wind Farm Power Changing and Improvement Strategies on Grid Voltage Stability

Author(s):  
Bai Qinyu ◽  
Yuan Lin ◽  
Ma Jiayi ◽  
Lu Tianqi ◽  
Zhang Xiaotian ◽  
...  
2016 ◽  
Vol 10 (10) ◽  
pp. 1-19
Author(s):  
Ahmed Rashad ◽  
Salah Kamel ◽  
Francisco Jurado
Keyword(s):  

Author(s):  
Sharmin Rahman ◽  
Sajeeb Saha ◽  
Shama Naz Islam ◽  
M Arif ◽  
Mehdi Mosadeghy ◽  
...  

2013 ◽  
Vol 756-759 ◽  
pp. 4171-4174 ◽  
Author(s):  
Xiao Ming Wang ◽  
Xing Xing Mu

With the Asynchronous wind generators as research object, this paper analyzes the problems of the voltage stability and the generation mechanism of the reactive power compensation during the wind farms connected operation. For paralleling capacitor bank has shown obvious defects, therefore this paper employs dynamic reactive power compensation to improve reactive characteristics of grid-connected wind farms. With the influences of different wind disturbances and grid faults on wind farms, wind farm model is set up and dynamic reactive power compensation system and wind speeds are built in the Matlab/Simulink software, The simulation result shows that they can provide reactive power compensation to ensure the voltage stability of the wind farms. But STATCOM needs less reactive compensation capacity to make sure the voltage and active power approaching steady state before the faults more quickly, Therefore STATCOM is more suitable for wind farms connected dynamic reactive power compensation.


2017 ◽  
Vol 59 ◽  
pp. 100-110 ◽  
Author(s):  
Costas Vournas ◽  
Ioannis Anagnostopoulos ◽  
Theodoros Souxes
Keyword(s):  

2012 ◽  
Vol 588-589 ◽  
pp. 574-577 ◽  
Author(s):  
Yan Juan Wu ◽  
Lin Chuan Li

Some faults will result wind turbine generators off-grid due to low grid voltage , furthermore, large-scale wind farms tripping can result in severe system oscillation and aggravate system transient instability . In view of this, static compensator (STATCOM) is installed in the grid containing large-scale wind farm. A voltage feedforward control strategy is proposed to adjust the reactive power of STATCOM compensation and ensure that the grid voltage is quickly restored to a safe range. The mathematical model of the doubly-fed induction wind generator (DFIG) is proposed. The control strategy of DFIG uses PI control for rotor angular velocity and active power. 4-machine system simulation results show that the STATCOM reactive power compensation significantly improve output active power of large-scale wind farm satisfying transient stability, reduce the probability of the tripping, and improve the utilization efficiency of wind farms.


Sign in / Sign up

Export Citation Format

Share Document