Smartphone Inertial Sensors for Human Locomotion Activity Recognition based on Template Matching and Codebook Generation

Author(s):  
Usman Azmat ◽  
Ahmad Jalal
2018 ◽  
Vol 5 (3) ◽  
pp. 2085-2093 ◽  
Author(s):  
Fuqiang Gu ◽  
Kourosh Khoshelham ◽  
Shahrokh Valaee ◽  
Jianga Shang ◽  
Rui Zhang

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4132 ◽  
Author(s):  
Ku Ku Abd. Rahim ◽  
I. Elamvazuthi ◽  
Lila Izhar ◽  
Genci Capi

Increasing interest in analyzing human gait using various wearable sensors, which is known as Human Activity Recognition (HAR), can be found in recent research. Sensors such as accelerometers and gyroscopes are widely used in HAR. Recently, high interest has been shown in the use of wearable sensors in numerous applications such as rehabilitation, computer games, animation, filmmaking, and biomechanics. In this paper, classification of human daily activities using Ensemble Methods based on data acquired from smartphone inertial sensors involving about 30 subjects with six different activities is discussed. The six daily activities are walking, walking upstairs, walking downstairs, sitting, standing and lying. It involved three stages of activity recognition; namely, data signal processing (filtering and segmentation), feature extraction and classification. Five types of ensemble classifiers utilized are Bagging, Adaboost, Rotation forest, Ensembles of nested dichotomies (END) and Random subspace. These ensemble classifiers employed Support vector machine (SVM) and Random forest (RF) as the base learners of the ensemble classifiers. The data classification is evaluated with the holdout and 10-fold cross-validation evaluation methods. The performance of each human daily activity was measured in terms of precision, recall, F-measure, and receiver operating characteristic (ROC) curve. In addition, the performance is also measured based on the comparison of overall accuracy rate of classification between different ensemble classifiers and base learners. It was observed that overall, SVM produced better accuracy rate with 99.22% compared to RF with 97.91% based on a random subspace ensemble classifier.


Author(s):  
Chih-Ta Yen ◽  
Jia-De Lin

This study employed wearable inertial sensors integrated with an activity-recognition algorithm to recognize six types of daily activities performed by humans, namely walking, ascending stairs, descending stairs, sitting, standing, and lying. The sensor system consisted of a microcontroller, a three-axis accelerometer, and a three-axis gyro; the algorithm involved collecting and normalizing the activity signals. To simplify the calculation process and to maximize the recognition accuracy, the data were preprocessed through linear discriminant analysis; this reduced their dimensionality and captured their features, thereby reducing the feature space of the accelerometer and gyro signals; they were then verified through the use of six classification algorithms. The new contribution is that after feature extraction, data classification results indicated that an artificial neural network was the most stable and effective of the six algorithms. In the experiment, 20 participants equipped the wearable sensors on their waists to record the aforementioned six types of daily activities and to verify the effectiveness of the sensors. According to the cross-validation results, the combination of linear discriminant analysis and an artificial neural network was the most stable classification algorithm for data generalization; its activity-recognition accuracy was 87.37% on the training data and 80.96% on the test data.


Sign in / Sign up

Export Citation Format

Share Document