Asymmetric Single DC-Link Cascaded H-Bridge Multilevel Converter with Model Predictive Control

Author(s):  
Renner Sartorio Camargo ◽  
Emilio Jose Bueno Pena ◽  
Lucas Frizera Encarnacao
Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 297 ◽  
Author(s):  
Weide Guan ◽  
Shoudao Huang ◽  
Derong Luo ◽  
Fei Rong

In recent years, modular multilevel converters (MMCs) have developed rapidly, and are widely used in medium and high voltage applications. Model predictive control (MPC) has attracted wide attention recently, and its advantages include straightforward implementation, fast dynamic response, simple system design, and easy handling of multiple objectives. The main technical challenge of the conventional MPC for MMC is the reduction of computational complexity of the cost function without the reduction of control performance of the system. Some modified MPC scan decrease the computational complexity by evaluating the number of on-state sub-modules (SMs) rather than the number of switching states. However, the computational complexity is still too high for an MMC with a huge number of SMs. A reverse MPC (R-MPC) strategy for MMC was proposed in this paper to further reduce the computational burden by calculating the number of inserted SMs directly, based on the reverse prediction of arm voltages. Thus, the computational burden was independent of the number of SMs in the arm. The control performance of the proposed R-MPC strategy was validated by Matlab/Simulink software and a down-scaled experimental prototype.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1861 ◽  
Author(s):  
Zhi Wu ◽  
Jiawei Chu ◽  
Wei Gu ◽  
Qiang Huang ◽  
Liang Chen ◽  
...  

In this paper a hybrid modulated model predictive control (HM2PC) strategy for modular-multilevel-converter (MMC) multi-terminal direct current (MTDC) systems is proposed for supplying power to passive networks or weak AC systems, with the control objectives of maintaining the DC voltage, voltage stability and power balance of the proposed system. The proposed strategy preserves the desired characteristics of conventional model predictive control method based on finite control set (FCS-MPC) methods, but deals with high switching frequency, circulating current and steady-state error in a superior way by introducing the calculation of the optimal output voltage level in each bridge arm and the specific duty cycle in each Sub-Module (SM), both of which are well-suited for the control of the MMC system. In addition, an improved multi-point DC voltage control strategy based on active power balanced control is proposed for an MMC-MTDC system supplying power to passive networks or weak AC systems, with the control objective of coordinating the power balance between different stations. An MMC-HVDC simulation model including four stations has been established on MATLAB/Simulink (r2014b MathWorks, Natick, MA, USA). Simulations were performed to validate the feasibility of the proposed control strategy under both steady and transient states. The simulation results prove that the strategy can suppress oscillations in the MMC-MTDC system caused by AC side faults, and that the system can continue functioning if any one of the converters are tripped from the MMC-MTDC network.


Sign in / Sign up

Export Citation Format

Share Document