A Fuzzy Chance Constraint Programming Approach for Location-Allocation Problem under Uncertainty in a Closed-Loop Supply Chain

Author(s):  
Yanxue Gong ◽  
Dao Huang ◽  
Enbo Wang ◽  
Yigong Peng
2021 ◽  
Author(s):  
Shahrzad Ahmadi Kermanshah

One of the important concerns in the world is E-waste. Ending up e-waste in the landfill and inappropriate disposing of it are hazardous to the environment. The goal of this research is to design and optimize a multi-period, multi-product, multi-echelon, and multi-customer Closed-Loop Supply Chain (CLSC) network for a mobile phone network considering different types of product returns. Commercial, end of life, and end-of-use returns are well-known in practice. In this research, a multi-objective mixed-integer linear programming formulation with stochastic demand and return is proposed to maximize the total profit in the mobile phone CLSC network, alongside maximizing the weights of eligible suppliers which are estimated based on a fuzzy method for efficient supplier selection and order allocation. Chance-constraint programming is applied in order to deal with the stochastic demand and return. Moreover, distance method and εε-constraint technique are employed to solve the proposed multi-objective problem. The application of the proposed mathematical model is illustrated in Toronto, Canada using real maps.


2021 ◽  
Vol 6 (2) ◽  
pp. 121-130
Author(s):  
Shahul Hamid Khan ◽  
Vivek Kumar Chouhan ◽  
Santhosh Srinivasan

Product recovery has become significant business strategies to increase a competitive edge in business and also in the society. Parts from discarded products due to rapid advancement and post-consumer products before & after end-of-life (EOL) are recovered to reduce landfill waste and to have become a part of circular economy. Product recovery is made possible with the help of Closed-loop supply chain (CLSC). This paper concentrates on multi-period, multi-product, and multi-echelon Closed Loop Green Supply Chain (CLGSC) network. A bi-objective (cost and emission) Mixed Integer Linear Programming (MILP) model has been formulated for the network and has been optimized using Goal Programming approach and Genetic Algorithm. Results are discussed for providing some managerial insights of the model.


Sign in / Sign up

Export Citation Format

Share Document