A MPEG2 Video Watermarking Algorithm Based on DCT Domain

Author(s):  
Lu Jianfeng ◽  
Yang Zhenhua ◽  
Yang Fan ◽  
Li Li
2010 ◽  
Vol 2 (4) ◽  
pp. 16-36
Author(s):  
Yaqing Niu ◽  
Sridhar Krishnan ◽  
Qin Zhang

Perceptual Watermarking should take full advantage of the results from human visual system (HVS) studies. Just noticeable distortion (JND), which refers to the maximum distortion that the HVS does not perceive, gives a way to model the HVS accurately. An effective Spatio-Temporal JND model guided video watermarking scheme in DCT domain is proposed in this paper. The watermarking scheme is based on the design of an additional accurate JND visual model which incorporates spatial Contrast Sensitivity Function (CSF), temporal modulation factor, retinal velocity, luminance adaptation and contrast masking. The proposed watermarking scheme, where the JND model is fully used to determine scene-adaptive upper bounds on watermark insertion, allows providing the maximum strength transparent watermark. Experimental results confirm the improved performance of the Spatio-Temporal JND model. The authors’ Spatio-Temporal JND model is capable of yielding higher injected-watermark energy without introducing noticeable distortion to the original video sequences and outperforms the relevant existing visual models. Simulation results show that the proposed Spatio-Temporal JND model guided video watermarking scheme is more robust than other algorithms based on the relevant existing perceptual models while retaining the watermark transparency.


2008 ◽  
Author(s):  
Hao-Xian Wang ◽  
Zhe-Ming Lu ◽  
Sheng-He Sun ◽  
Theodore E. Simos ◽  
George Psihoyios

Author(s):  
B.SUMANA PRIYANKA ◽  
N. SAGAR

There is a need for real-time copyright logo insertion in emerging applications, such as Internet protocol television (IPTV). This situation arises in IP-TV and digital TV broadcasting when video residing in a server has to be broadcast by different stations and under different broadcasting rights. Embedded systems that are involved in broadcasting need to have embedded copyright protection. Existing works are targeted towards invisible watermarking, not useful for logo insertion. MPEG-4 is the mainstream exchangeable video format in the Internet today because it has higher and flexible compression rate, lower bit rate, and higher efficiency while superior visual quality.The main steps for MPEG-4 are color space conversion and sampling, DCT and its inverse (IDCT), quantization, zigzag scanning, motion estimation, and entropy coding. In this work a watermarking algorithm that performs the broadcaster's logo insertion as watermark in the DCT domain is been presented. The robustness of DCT watermarking arises from the fact that if an attack tries to remove watermarking at mid frequencies, it will risk degrading the fidelity of the image\video because some perceptive details are at mid frequencies. The suggested methods has implemented in matlab.


Author(s):  
Yaqing Niu ◽  
Sridhar Krishnan ◽  
Qin Zhang

Perceptual Watermarking should take full advantage of the results from human visual system (HVS) studies. Just noticeable distortion (JND), which refers to the maximum distortion that the HVS does not perceive, gives a way to model the HVS accurately. An effective Spatio-Temporal JND model guided video watermarking scheme in DCT domain is proposed in this paper. The watermarking scheme is based on the design of an additional accurate JND visual model which incorporates spatial Contrast Sensitivity Function (CSF), temporal modulation factor, retinal velocity, luminance adaptation and contrast masking. The proposed watermarking scheme, where the JND model is fully used to determine scene-adaptive upper bounds on watermark insertion, allows providing the maximum strength transparent watermark. Experimental results confirm the improved performance of the Spatio-Temporal JND model. The authors’ Spatio-Temporal JND model is capable of yielding higher injected-watermark energy without introducing noticeable distortion to the original video sequences and outperforms the relevant existing visual models. Simulation results show that the proposed Spatio-Temporal JND model guided video watermarking scheme is more robust than other algorithms based on the relevant existing perceptual models while retaining the watermark transparency.


Sign in / Sign up

Export Citation Format

Share Document