Reciprocity Enhancement in V2V Key Generation System by using HPK Method

Author(s):  
Inka Trisna Dewi ◽  
Amang Sudarsono ◽  
Prima Kristalina ◽  
Mike Yuliana
2006 ◽  
Vol 6 (7) ◽  
pp. 561-582
Author(s):  
H.P. Yuen ◽  
R. Nair ◽  
E. Corndorf ◽  
G.S. Kanter ◽  
P. Kumar

Lo and Ko have developed some attacks on the cryptosystem called $\alpha \eta$}, claiming that these attacks undermine the security of $\alpha\eta$ for both direct encryption and key generation. In this paper, we show that their arguments fail in many different ways. In particular, the first attack in [1] requires channel loss or length of known-plaintext that is exponential in the key length and is unrealistic even for moderate key lengths. The second attack is a Grover search attack based on `asymptotic orthogonality' and was not analyzed quantitatively in [1]. We explain why it is not logically possible to "pull back'' an argument valid only at $n=\infty$ into a limit statement, let alone one valid for a finite number of transmissions n. We illustrate this by a `proof' using a similar asymptotic orthogonality argument that coherent-state BB84 is insecure for any value of loss. Even if a limit statement is true, this attack is a priori irrelevant as it requires an indefinitely large amount of known-plaintext, resources and processing. We also explain why the attacks in [1] on $\alpha\eta$ as a key-generation system are based on misinterpretations of [2]. Some misunderstandings in [1] regarding certain issues in cryptography and optical communications are also pointed out. Short of providing a security proof for $\alpha\eta$, we provide a description of relevant results in standard cryptography and in the design of $\alpha\eta$ to put the above issues in the proper framework and to elucidate some security features of this new approach to quantum cryptography.


2019 ◽  
Vol 6 (4) ◽  
pp. 6404-6416 ◽  
Author(s):  
Weitao Xu ◽  
Sanjay Jha ◽  
Wen Hu

Author(s):  
Mays M. Hoobi

The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key generations. This means the key generation system generates two keys: one is simple, and the other one is encrypted by using an improved Caesar algorithm. The encryption algorithm in the first 8 round uses simple key 1, and from round 9 to round 16, the algorithm uses encrypted key 2. Using the improved structure of the Data Encryption Standard algorithm, the results of this paper increase Data Encryption Standard encryption security, performance, and complexity of search compared with standard Data Encryption Standard. This means the Differential cryptanalysis cannot be performed on the cipher-text.


Sign in / Sign up

Export Citation Format

Share Document