Adaptive Neuro-fuzzy Inference System for Classification of EEG Signals Using Fractal Dimension

Author(s):  
Maryam Vatankhah ◽  
Mehdi Yaghubi
2008 ◽  
Vol 36 (9) ◽  
pp. 1449-1457 ◽  
Author(s):  
Zoya Heydari ◽  
Farzam Farahmand ◽  
Hossein Arabalibeik ◽  
Mohamad Parnianpour

2018 ◽  
Vol 72 (3) ◽  
pp. 685-701 ◽  
Author(s):  
Rui Sun ◽  
Li-Ta Hsu ◽  
Dabin Xue ◽  
Guohao Zhang ◽  
Washington Yotto Ochieng

The multipath effect and Non-Line-Of-Sight (NLOS) reception of Global Positioning System (GPS) signals both serve to degrade performance, particularly in urban areas. Although receiver design continues to evolve, residual multipath errors and NLOS signals remain a challenge in built-up areas. It is therefore desirable to identify direct, multipath-affected and NLOS GPS measurements in order improve ranging-based position solutions. The traditional signal strength-based methods to achieve this, however, use a single variable (for example, Signal to Noise Ratio (C/N0)) as the classifier. As this single variable does not completely represent the multipath and NLOS characteristics of the signals, the traditional methods are not robust in the classification of signals received. This paper uses a set of variables derived from the raw GPS measurements together with an algorithm based on an Adaptive Neuro Fuzzy Inference System (ANFIS) to classify direct, multipath-affected and NLOS measurements from GPS. Results from real data show that the proposed method could achieve rates of correct classification of 100%, 91% and 84%, respectively, for LOS, Multipath and NLOS based on a static test with special conditions. These results are superior to the other three state-of-the-art signal reception classification methods.


Fuzzy Systems ◽  
2017 ◽  
pp. 347-366
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


Sign in / Sign up

Export Citation Format

Share Document