wavelet coefficients
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 85)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Guilin Xi ◽  
Xiaojun Huang ◽  
Yaowen Xie ◽  
Bao Gang ◽  
Yuhai Bao ◽  
...  

Detection of forest pest outbreaks can help in controlling outbreaks and provide accurate information for forest management decision-making. Although some needle injuries occur at the beginning of the attack, the appearance of the trees does not change significantly from the condition before the attack. These subtle changes cannot be observed with the naked eye, but usually manifest as small changes in leaf reflectance. Therefore, hyperspectral remote sensing can be used to detect the different stages of pest infection as it offers high-resolution reflectance. Accordingly, this study investigated the response of a larch forest to Jas’s Larch Inchworm (Erannis jacobsoni Djak) and performed the different infection stages detection and identification using ground hyperspectral data and data on the forest biochemical components (chlorophyll content, fresh weight moisture content and dry weight moisture content). A total of 80 sample trees were selected from the test area, covering the following three stages: before attack, early-stage infection and middle- to late-stage infection. Combined with the Findpeaks-SPA function, the response relationship between biochemical components and spectral continuous wavelet coefficients was analyzed. The support vector machine classification algorithm was used for detection infection. The results showed that there was no significant difference in the biochemical composition between healthy and early-stage samples, but the spectral continuous wavelet coefficients could reflect these subtle changes with varying degrees of sensitivity. The continuous wavelet coefficients corresponding to these stresses may have high potential for infection detection. Meanwhile, the highest overall accuracy of the model based on chlorophyll content, fresh weight moisture content and dry weight moisture content were 90.48%, 85.71% and 90.48% respectively, and the Kappa coefficients were 0.85, 0.79 and 0.86 respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mourad Talbi ◽  
Med Salim Bouhlel

Speech enhancement has gained considerable attention in the employment of speech transmission via the communication channel, speaker identification, speech-based biometric systems, video conference, hearing aids, mobile phones, voice conversion, microphones, and so on. The background noise processing is needed for designing a successful speech enhancement system. In this work, a new speech enhancement technique based on Stationary Bionic Wavelet Transform (SBWT) and Minimum Mean Square Error (MMSE) Estimate of Spectral Amplitude is proposed. This technique consists at the first step in applying the SBWT to the noisy speech signal, in order to obtain eight noisy wavelet coefficients. The denoising of each of those coefficients is performed through the application of the denoising method based on MMSE Estimate of Spectral Amplitude. The SBWT inverse, S B W T − 1 , is applied to the obtained denoised stationary wavelet coefficients for finally obtaining the enhanced speech signal. The proposed technique’s performance is proved by the calculation of the Signal to Noise Ratio (SNR), the Segmental SNR (SSNR), and the Perceptual Evaluation of Speech Quality (PESQ).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tingzhong Wang ◽  
Lingli Zhu ◽  
Miaomiao Fu ◽  
Tingting Zhu ◽  
Ping He

Repetitive transients are usually generated in the monitoring data when a fault occurs on the machinery. As a result, many methods such as kurtogram and optimized Morlet wavelet and kurtosis method are proposed to extract the repetitive transients for fault diagnosis. However, one shortcoming of these methods is that they are constructed based on the index of kurtosis and are sensitive to the impulsive noise, leading to failure in accurately diagnosing the fault of the machinery operating under harsh environment. To address this issue, an optimized SES entropy wavelet method is proposed. In the proposed method, the optimized parameters including bandwidth and central frequency of Morlet wavelets are selected. Then, based on the wavelet coefficients decomposed using the optimized Morlet wavelet, the SES entropy is calculated to select the scales of wavelet coefficients. Finally, the repetitive transients are reconstructed based on the denoising wavelet coefficients of the selected scales. One simulation case and vibration data collected from the experimental setup are used to verify the effectiveness of the proposed method. The simulated and experimental analyses showed that the signal-to-noise ratio (SNR) of the proposed method has the largest value. Specifically, the SNR in the experimental analysis of the proposed method is 0.6, while that of the other three methods is 0.043, 0.0065, and 0.0045, respectively. Therefore, the result shows that the proposed method is superior to the traditional methods for repetitive transient extraction from the vibration data suffered from impulsive noise.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1418
Author(s):  
Yue Yu ◽  
Kun She ◽  
Jinhua Liu

Medical imaging is widely used in medical diagnosis. The low-resolution image caused by high hardware cost and poor imaging technology leads to the loss of relevant features and even fine texture. Obtaining high-quality medical images plays an important role in disease diagnosis. A surge of deep learning approaches has recently demonstrated high-quality reconstruction for medical image super-resolution. In this work, we propose a light-weight wavelet frequency separation attention network for medical image super-resolution (WFSAN). WFSAN is designed with separated-path for wavelet sub-bands to predict the wavelet coefficients, considering that image data characteristics are different in the wavelet domain and spatial domain. In addition, different activation functions are selected to fit the coefficients. Inputs comprise approximate sub-bands and detail sub-bands of low-resolution wavelet coefficients. In the separated-path network, detail sub-bands, which have more sparsity, are trained to enhance high frequency information. An attention extension ghost block is designed to generate the features more efficiently. All results obtained from fusing layers are contracted to reconstruct the approximate and detail wavelet coefficients of the high-resolution image. In the end, the super-resolution results are generated by inverse wavelet transform. Experimental results show that WFSAN has competitive performance against state-of-the-art lightweight medical imaging methods in terms of quality and quantitative metrics.


2021 ◽  
Vol 21 (3) ◽  
pp. 268-274
Author(s):  
T. N. Kruglova

Introduction. The problem of the load on an electric drive system in a parallel kinematic structure is considered. The task of developing a fault-tolerant system that provides performing a given process in case of a failure of one or more drives is described. The work objective is to create a method for estimating the current and additional load on each drive of the mechanism of a parallel kinematic structure. The solution enables to correct the operating mode when performing a given process without compromising serviceable drives.Materials and Methods. Previously, a diagnostic method was developed. It is based on the calculation and analysis of the coefficients of straight lines that approximate the envelopes of the values of the wavelet transform coefficients of electric motor current signals, taking into account the characteristic scales. This makes it possible to determine the current technical condition of the electric motor and find malfunctions. The logical continuation of this approach is the proposed method for assessing the current and additional load. It provides finding the current load on the drive based on the coefficients of the lines approximating the envelopes of the wavelet coefficients of the current signal. To calculate the additional load, the number and location of faulty drives are taken into account.Results. For each scale of the wavelet coefficients, the relative coefficients and the current load on each drive are determined. The possibility of redistributing the load to two adjacent jacks was checked; the behavior of the system in this case was investigated. The load moved by the faulty jack is redistributed to two adjacent jacks in equal shares — 14.76 % each. The total load on the drives is 44.28 %, which is safe for the servo. The load on the drive of the fourth jack does not change (29.52 %). The drives have a sufficient safety margin. It is established that all three operating modes are acceptable for the studied servo drive, and they do not cause dynamic overloads and premature failure.Discussion and Conclusions. The experimental studies on the method of assessing the current and additional load have shown its adequacy and high efficiency. It was found that when the drives were disconnected from one of the racks of the mechanism, the system performed a load redistribution on the drives. Thus, it was possible to avoid their dynamic overloads and premature failure. This means that the solution is able to ensure the reliable functioning of the complex at the time of renovation work.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kai-Cheng Wang

AbstractAlthough wavelet decompositions of functions in Besov spaces have been extensively investigated, those involved with mild decay bases are relatively unexplored. In this paper, we study wavelet bases of Besov spaces and the relation between norms and wavelet coefficients. We establish the $l^{p}$ l p -stability as a measure of how effectively the Besov norm of a function is evaluated by its wavelet coefficients and the $L^{p}$ L p -completeness of wavelet bases. We also discuss wavelets with decay conditions and establish the Jackson inequality.


Sign in / Sign up

Export Citation Format

Share Document