A biological inspired multi-agent based shop floor control architecture for manufacturing systems

Author(s):  
Dania Adnan El-Kebbe ◽  
Juan Gomez-Fernandez
Author(s):  
Dimitris Mourtzis ◽  
Nikolaos Milas ◽  
Aikaterini Vlachou

With the advent of the fourth industrial revolution (Industry 4.0), manufacturing systems are transformed into digital ecosystems. In this transformation, the internet of things (IoT) and other emerging technologies pose a major role. To shift manufacturing companies toward IoT, smart sensor systems are required to connect their resources into the digital world. To address this issue, the proposed work presents a monitoring system for shop-floor control following the IoT paradigm. The proposed monitoring system consists of a data acquisition device (DAQ) capable of capturing quickly and efficiently the data from the machine tools, and transmits these data to a cloud gateway via a wireless sensor topology. The monitored data are transferred to a cloud server for further processing and visualization. The data transmission is performed in two levels, i.e., locally in the shop-floor using a star wireless sensor network (WSN) topology with a microcomputer gateway and from the microcomputer to Cloud using Internet protocols. The developed system follows the loT paradigm in terms of connecting the physical with the cyber world and offering integration capabilities with existing industrial systems. In addition, the open platform communication—unified architecture (OPC-UA) standard is employed to support the connectivity of the proposed monitoring system with other IT tools in an enterprise. The proposed monitoring system is validated in a laboratory as well as in machining and mold-making small and medium-sized enterprises (SMEs).


Sign in / Sign up

Export Citation Format

Share Document