control techniques
Recently Published Documents





2022 ◽  
Vol 20 (3) ◽  
pp. 488-495
Javier Blanco Rico ◽  
Basil Mohammed Al-Hadithi ◽  
Roberto Gonzalez Herranz

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 25
Charalampos Papadopoulos ◽  
Dimitrios Mitridis ◽  
Kyros Yakinthos

In this study, the conceptual design of an unmanned ground effect vehicle (UGEV), based on in-house analytical tools and CFD calculations, followed by flow control studies, is presented. Ground effect vehicles can operate, in a more efficient way, over calm closed seas, taking advantage of the aerodynamic interaction between the ground and the vehicle. The proposed UGEV features a useful payload capacity of 300 kg and a maximum range of 300 km cruising at 100 kt. Regarding the aerodynamic layout, a platform which combines the basic geometry characteristics of the blended wing body (BWB), and box wing (BXW) configurations is introduced. This hybrid layout aims to incorporate the most promising features from both configurations, while it enables the UGEV to operate under adverse flight conditions of the atmospheric boundary layer of the earth. In order to enhance the performance characteristics of the platform, both passive and active flow control techniques are studied and incorporated into the conceptual design phase of the vehicle. For the passive flow control techniques, the adaptation of tubercles and wing fences is evaluated. Regarding the active flow control techniques, a wide range of morphing technologies is investigated based on performance and integration criteria. Finally, stability studies are conducted for the proposed platform.

J. J. Carreño ◽  
R. Villamizar

Robust controllers have been developed by both control techniques QFT and H∞ applied in the waist, shoulder and elbow of a manipulator of 6 degrees of freedom. The design is based on the identification of a linear model of the robot dynamics which represents the non-linearity of the system using parametric uncertainty. QFT control methodology is used to tune the robust PID-controller and pre-filters of the system, and H∞ controllers are obtained by designing the weighting functions and using the MATLAB hinfopt tool. Finally the performance of robust controllers is compared designed based on the calculation and analysis of some behavioral indices.

2022 ◽  
Vol 19 (2) ◽  
pp. 025601
Alessandra R Lima ◽  
Lucas D Dias ◽  
Matheus Garbuio ◽  
Natalia M Inada ◽  
Vanderlei S Bagnato

Abstract The control of pests and vector-borne diseases (VDBs) are considered public health issues Worldwide. Among the control techniques and pesticides used so far, photodynamic inactivation (PDI) has been shown as an eco-friendly, low cost, and efficient approach to eliminate pests and VDBs. PDI is characterized using a photosensitizing molecule, light and molecular oxygen (O2) resulting in production of reactive oxidative species which can promote the oxidation of biomolecules on pests and vectors. Herein, we review the past 51 years (1970–2021) regarding the use of photo pesticides, reporting the most important parameters for the protocol applied, the results obtained, and limitations. Moreover, we described the mechanism of action of the PDI, main classes of photopesticides used so far as well as the cell death mechanism resulting from the photodynamic action.

2022 ◽  
Vol 7 (1) ◽  
pp. 1-17
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake–turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking at the increase in the power production, properly weighted through the wind statistics. Sometimes, fatigue loads are also considered in the control optimization problem. However, an aspect which is rather overlooked in the literature on this subject is the evaluation of the impact that a farm control law has on the individual wind turbine in terms of maximum loads and dynamic response under extreme conditions. In this work, two promising wind farm controls, based on wake redirection (WR) and dynamic induction control (DIC) strategy, are evaluated at the level of a single front-row wind turbine. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators, with special emphasis on ultimate loads and maximum blade deflection. Secondarily, an optimal blade redesign process is performed with the goal of quantifying the modification in the structure of the blade entailed by a possible increase in ultimate values due to the presence of wind farm control. Such an analysis provides for an important piece of information for assessing the impact of the farm control on the cost-of-energy model.

2022 ◽  
Andres Pajares ◽  
Eugenio Schuster ◽  
Kathreen E Thome ◽  
Anders S Welander ◽  
Jayson L Barr ◽  

Abstract Simulations using the Control-Oriented Transport SIMulator (COTSIM) and DIII-D experiments have been carried out to demonstrate the performance of a novel integrated-control architecture for simultaneous regulation of individual-scalar magnitudes. The individual scalars considered in this work include kinetic variables, such as the thermal stored-energy or volume-average toroidal rotation, and magnetic variables such as the safety factor profile at different spatial locations. Separate control algorithms have been designed independently for each of these individual variables that use robust, nonlinear control techniques. In addition, the individual-scalar controllers have been integrated with Neoclassical Tearing-Mode (NTM) suppression algorithms, supervisory and exception handling algorithms, and an actuator manager, both within COTSIM and in the Plasma Control System (PCS) of the DIII-D tokamak. The resulting architecture has a high level of integration and some of the functionalities that will be required to fulfill the advanced-control requirements anticipated for ITER. Initial simulations using COTSIM suggest that the plasma performance and its Magneto-HydroDynamic (MHD) stability may be improved under integrated feedback control. These simulation results also show good qualitative agreement with DIII-D experimental results in the steady-state high-$q_{min}$ scenario, which is one of the candidates for steady-state operation in ITER. By means of individual-scalar feedback-control techniques in conjunction with NTM-suppression techniques, the confinement deterioration caused by NTMs in these scenarios may be significantly ameliorated.

2022 ◽  
pp. 68-95
Syed Qaseem Ali ◽  
Geza Joos ◽  
Chu Sun

Integrated battery chargers (IBCs) have been proposed as a low-weight, low-volume, and high-power solution to conventional conductive chargers. However, the design of such chargers is complicated, requiring special components or control techniques to solve inherent issues (such as galvanic isolation, torque generation, and system reconfiguration) associated with their design. Solutions vary based on charging power, drive topology, and motor technology. This chapter introduces designs for IBCs, including solutions as proposed in the literature. It also presents challenges in their industrial adoption. Finally, the chapter presents opportunities for fleet charging applications using IBCs.

Sign in / Sign up

Export Citation Format

Share Document