Dirichlet-process-mixture-based Bayesian nonparametric method for Markov switching process estimation

Author(s):  
Clement Magnant ◽  
Audrey Giremus ◽  
Eric Grivel ◽  
Laurent Ratton ◽  
Bernard Joseph
2009 ◽  
Vol 4 (4) ◽  
pp. 793-816 ◽  
Author(s):  
Matthew A. Taddy ◽  
Athanasios Kottas

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yaxiong Han ◽  
Zhaocheng He

A crucial task in traffic data analysis is similarity pattern discovery, which is of great importance to urban mobility understanding and traffic management. Recently, a wide range of methods for similarities discovery have been proposed and the basic assumption of them is that traffic data is complete. However, missing data problem is inevitable in traffic data collection process due to a variety of reasons. In this paper, we propose the Bayesian nonparametric tensor decomposition (BNPTD) to achieve incomplete traffic data imputation and similarity pattern discovery simultaneously. BNPTD is a hierarchical probabilistic model, which is comprised of Bayesian tensor decomposition and Dirichlet process mixture model. Furthermore, we develop an efficient variational inference algorithm to learn the model. Extensive experiments were conducted on a smart card dataset collected in Guangzhou, China, demonstrating the effectiveness of our methods. It should be noted that the proposed BNPTD is universal and can also be applied to other spatiotemporal traffic data.


2018 ◽  
Vol 11 (3) ◽  
pp. 52 ◽  
Author(s):  
Mark Jensen ◽  
John Maheu

In this paper, we let the data speak for itself about the existence of volatility feedback and the often debated risk–return relationship. We do this by modeling the contemporaneous relationship between market excess returns and log-realized variances with a nonparametric, infinitely-ordered, mixture representation of the observables’ joint distribution. Our nonparametric estimator allows for deviation from conditional Gaussianity through non-zero, higher ordered, moments, like asymmetric, fat-tailed behavior, along with smooth, nonlinear, risk–return relationships. We use the parsimonious and relatively uninformative Bayesian Dirichlet process prior to overcoming the problem of having too many unknowns and not enough observations. Applying our Bayesian nonparametric model to more than a century’s worth of monthly US stock market returns and realized variances, we find strong, robust evidence of volatility feedback. Once volatility feedback is accounted for, we find an unambiguous positive, nonlinear, relationship between expected excess returns and expected log-realized variance. In addition to the conditional mean, volatility feedback impacts the entire joint distribution.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A168-A169
Author(s):  
T Le

Abstract Introduction The emphasis on disease prevention, early detection, and preventive treatments will revolutionize the way sleep clinicians evaluate their patients. Obstructive Sleep Apnea (OSA) is one of the most prevalent sleep disorders with approximately 100 millions patients been diagnosed worldwide. The effectiveness of sleep disorder therapies can be enhanced by providing personalized and real-time prediction of OSA episode onsets. Previous attempts at OSA prediction are limited to capturing the nonlinear, nonstationary dynamics of the underlying physiological processes. Methods This paper reports an investigation into heart rate dynamics aiming to predict in real time the onsets of OSA episode before the clinical symptoms appear. The method includes (a) a representation of a transition state space network to characterize dynamic transition of apneic states (b) a Dirichlet-Process Mixture-Gaussian-Process prognostic method for estimating the distribution of the time estimate the remaining time until the onset of an impending OSA episode by considering the stochastic evolution of the normal states to an anomalous (apnea) Results The approach was tested using three datasets including (1) 20 records from 14 OSA subjects in benchmark ECG apnea databases (Physionet.org), (2) records of eight subjects from previous work. The average prediction accuracy (R2) is reported as 0.75%, with 87% of observations within the 95% confidence interval. Estimated risk indicators at 1 to 3 min till apnea onset are reported as 85.8 %, 80.2 %, and 75.5 %, respectively. Conclusion The present prognosis approach can be integrated with wearable devices to facilitate individualized treatments and timely prevention therapies. Support N/A


Sign in / Sign up

Export Citation Format

Share Document